3 Types of malnutrition
1. **Marasmus**: lack somatic proteins
2. **Kwashiorkor**: lack visceral proteins
3. **Mixed Marasmus/Kwashiorkor**: a bit of both

3 Protein compartments
1. **Somatic**: muscle proteins
2. **Visceral**: produced by organs, e.g. albumin, transferrin
3. **Immunity**: a subset of visceral, e.g. antibodies, clotting factors

5 Steps to assess nutritional status
1. **Visual assessment**
 - Marasmus vs. Kwashiorkor
2. **Patient’s history**: present and past weight
3. **Physical exam**
4. **Protein compartments**
 - Weight/Height measurements
 - Edema/obesity/pathologies distort results
 - Anthropometric measurements: muscle vs. fat amounts
 - Triceps skin fold
 - Mid-arm circumference
 - Creatinine/height index (CHI)
 - Urinary creatinine is decreased in malnutrition and renal disease
 - Better in terms of height than weight
 - CHI = actual/normal mg excreted (where 90%-100% is normal)
 - Albumin: 50-60% of total serum proteins
 - Normal conc. = 3.4-5g/100ml of blood
 - Catabolic stress = ↓albumin = ↑insulin = further ↓aa
 - Interplay between 2 types of malnutrition: somatic aa used as building blocks for visceral aa
 - Easier to detect drop in serum conc. of transferrin than albumin
5. **Immune competence** *(anergy = inability of a patient to respond to an infection)*
 - Lymphocyte counts
 - Antigen-skin tests: Multitest CMI system (think Cooties game)
 - Ability of lymphocytes and immunoglobulins to respond to antigens
 - >1 grade of swelling/redness indicates some immune response
 - 0 grade = lack of response = indicative of anergy and malnutrition

4 Roles of pharmacists in nutrition
1. Help diagnose type/degree of malnutrition
2. Recommend treatment/method
3. Evaluate treatment, suggest changes
4. Management

If the GI tract works, use it!
- Into mouth (**nasogastric tube**)
- Into stomach (**gastrostomy**)
- Into small intestine (**jejunostomy**)

If not, use parental/IV administration
- Protein sparing
 - Mild patients
Peripheral arm vein
- Isotonic: 2.75-3.5% solution (+vitamins, minerals, electrolytes)
- Not a TPN modality: no fat or dextrose given

- Peripheral TPN
 - Mild to moderate patients for limited time (<10 days)
 - Patients with septicemia
 - No fluid restrictions

- Central TPN
 - Moderate to severe patients
 - Burn patients (no peripheral veins available)
 - Longer duration (2-3 weeks)
 - Subclavian or internal jugular vein

Numbers to know

Nitrogen balance

\[
\text{Nitrogen balance} = \left(\text{Protein intake} \times 16\% \right) - \left(N_{\text{excreted}} + C \right) \rightarrow \text{should have positive N balance of 4-6g}
\]

Caloric conversions

- Dextrose: 3.4kcal/g
- Lipid emulsion: 9kcal/g

Nutritional requirements

- **Protein** (supplied in 3.5-15% conc.)
 - Maintenance 0.8-1.6g aa/kg/day
 - Mild trauma 1.6g-2.0g aa/kg/day
 - Severe trauma 2.0-3.0g aa/kg/day

- **Nitrogen**
 - 16% of protein -or- protein/6.25 (in grams)

- **Calories**
 - Mildly stressed 125-150kcal/gN2
 - Highly stressed 80-100kcal/gN2 (note: less calories needed for severe pts because less mobilized)
 - Provided as dextrose and fat (50/50, 40/60)
 - **Dextrose** supplied as 5-70% concentration (e.g. D5W=50g/L, D50W=500g/L)
 - **Lipid emulsion** supplied as 10-20% concentration
 - 200 extra kcal from glycerin and emulsifiers
 - Now favored over dextrose because
 - ↓Hyperglycemia risk
 - Dextrose → fat (accumulates in liver)
 - ↓Osmolarity of aa/dextrose solutions to facilitate peripheral admin
 - ↓Severity and frequency of phlebitis
 - ↓Chance of essential FA deficiency

- **Molecular weights**
 - Dextrose: 180g/mol
 - NS: 58.5g/mol

CALCULATIONS

Solve for nutrition

1. Solve for volume (ml) of **amino acids** needed [use: degree of trauma, weight of pt, concentration]
2. Solve for amount (g) of **nitrogen** needed [use: grams of amino acid from part 1]
3. Solve for kcal needed [use: degree of trauma, grams of nitrogen from part 2]
 a. Determine ratio of dextrose/lipid
4. Solve for volume (ml) of **dextrose** needed [use: ratio, concentration, caloric conversion]
5. Solve for volume (ml) of **lipid emulsion** needed [use: ratio, concentration, caloric conversion]

Solve for tonicity
- **Amino acids:** will be given mOsm/L, use known volume to solve
- **Dextrose:** solve knowing D5W=280mOsm/L, multiply by known volume
- **Lipid emulsion:** 2.25g glycerin/100ml...

Incompatibility charts

<table>
<thead>
<tr>
<th>ANIONS</th>
<th>Monovalent Cl</th>
<th>Divalent CO$_3$$^{2-}$</th>
<th>Trivalent PO$_4$$^{3-}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATIONS</td>
<td>Monovalent Na$^+$, K$^+$</td>
<td>Soluble</td>
<td>Soluble</td>
</tr>
<tr>
<td></td>
<td>Divalent Ca$^{2+}$, Mg$^{2+}$</td>
<td>Soluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td></td>
<td>Trivalent</td>
<td>Soluble</td>
<td>Insoluble</td>
</tr>
</tbody>
</table>

Mg$^{2+}$ behaves differently → important when considering lactate ringers and ringer solutions

Ion pair incompatibilities

Mixing of a weak acid drug with a weak basic drug
- Barbiturates: weak acids
- Heparin: weak bases

Na+Phenobarb- + Morphine+SO4- → big insoluble salt
Na+Phenobarb- + Tetracycline+Cl- → big insoluble salt

90% of reactions are some form of ion pair incompatibility

LVP

<table>
<thead>
<tr>
<th>SVP</th>
<th>LVP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopamine HCl (basic)</td>
<td>D5W + 5%NaHCO$_3$ (basic)</td>
</tr>
<tr>
<td>NaPhenytoin (acidic)</td>
<td>I (free base)</td>
</tr>
<tr>
<td>KPenG (acidic)</td>
<td>I (base hydrolysis)</td>
</tr>
</tbody>
</table>

SVP: have added sodium hydroxide (basic) but drug itself may be acidic

Penicillins: beta lactams or lactones, cyclic esters or amides

Beta lactam rings are sensitive to both acids and bases which cause hydrolysis

A lot of lactates are soluble: low enough molecular weight

NaPhenytoin is only soluble in NS and needs to be given w/in a ½ hr of making it up

NaPhenytoin is a weak acid but likes base, it is a very insoluble drug (in order to keep it ionized, need a lot of cosolvents and need to raise the pH really high)
Benzyal alcohol: preservative
Sodium biphosphbate anhydrous: buffer (phosphates are trivalent)
Ascorbic acid: antioxidant
Ampicillin can’t be given in dextrose: it will hydrolyze the ampicillin
Hydrocortisone is an ester: ester hydrolysis
Tetracycline: don’t take with milk or cheese because of it reacts with calcium
Barbituates: weak acid
Morphine sulfate: weak base

<table>
<thead>
<tr>
<th>LVP</th>
<th>RL +20000 NaHep (basic)</th>
<th>D20W + 4.25% aas (acid)</th>
<th>NS+50mg Hydrocortisone NaSucc ((acid))</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVP</td>
<td>Lidocaine HCl (base)</td>
<td>I (ion pair, free base)</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>NaKochalate (acid)</td>
<td>C</td>
<td>I (ion pair)</td>
</tr>
<tr>
<td></td>
<td>Haloperidol lactate ester</td>
<td>I (base hydrolysis of ester)</td>
<td>I (acid hydrolysis of ester)</td>
</tr>
</tbody>
</table>

When have big amounts of heparin → probably basic
If small amounts → not going to make it basic
In general, not good to put drugs in TPN

IMMUNE STIMULANTS

Vaccines
- Attenuated(live) or inactivated (killed)
- Whole or fractions
- Take virus → sonicate to death → differential centrifugation to isolate portion important for immune response

Toxoid
- Modified exotoxin rendered non-toxic
- Easy for companies to make
- Require refrigeration and/or reconstitution (freeze dried powder)

Passive immunity
- **Human immune sera**
 - Immunoglobulin: e.g. measles, hepatitis A
 - Hyper immune serum: e.g. hepatitis B, rabies
- **Animal immune sera**
 - Antitoxin: e.g. botulism, diphtheria, tetanus
 - Antiviral serum: e.g. rabies
 - Antivenin: e.g. rattlesnake, black widow spider, scorpion
- **Viral vaccines** e.g. measles, mumps, influenza
 - Isolated by: disintegration, column filtration, differential centrifugation
- **Viral vaccines in human tissue culture**
Allergen extracts
- **Types:** food, animals, grasses, insects, molds, trees, weeds, inhalants
- **Extraction process:** percolation/decoction
- **Diagnosis:** scratch/prick test using very dilute solutions of allergen extracts

Immunotherapy
- Treatment of disease by inducing, enhancing, or suppressing an immune response
- **Goal:** to increase IgG
- Small subcut doses → weak dose qwk → increasing strength or # of doses over a few months
- IgG competes with IgE: IgG>>IgE with increased dosing with allergen
- **Problems:** difficult to standardize and establish potency
- **Dosage forms:** solutions, suspensions, lyophilized powders requiring reconstitution
- **Additives**
 - Human serum albumin: protein preservative
 - Normal saline: tonicity
 - Phenol: antimicrobial
 - Glycerin: protein preservative
 - Aluminum precipitated allergen: slows absorption/action of allergen
- **Use & Handling**
 - Aseptic and sterile procedures
 - Proper documentation
 - Generally require refrigeration (never frozen)
 - Sterility testing required (particulate/pyrogen testing not)

Hymenoptera venoms
- Honeybee, wasp, hornets
- Purified, lyophilized
- Usually only venom collected, not whole insect (exception: fire ants)

PROTEIN PHARMACEUTICALS

Biotechnological products techniques
- Recombinant DNA
- Monoclonal antibodies
- PCR
- Gene therapy
- Nucleotide blockade/antisense (mRNA)

Chemical instability
Change in structure due to breaking of bonds
- Proteolytic cleavage
 - Proteases
 - Hydrolysis: solution is to lyophilize the product
- Deamidation: cleave NH3 group
- Oxidation: Met, Cys (also His, Trp, Tyr)

Physical instability
Change in structure not due to bond breaking/forming
- Aggregation: precipitation, normal Brownian motion
- Conformational stability: denaturing/unfolding of protein
Additives in biotech formulations

- **Serum albumin**
 - Flood the system so active proteins won’t be bound, i.e. inhibit adsorption
 - Adsorption binding sites may be hydrophilic or lipophilic, proteins have both, which makes it a problem
 - Tubing: use polyester or nylon, not PVC, which has more binding sites
 - Resembles nascent complexing proteins: w/o nascent proteins, active proteins are more active
 - Cryoprotectant: protects while freeze drying, almost as good as mannitol
 - Examples when albumin is used: interferon, IL-2, TPA

- **Amino acids (Gly)**
 - Chelate trace elements to prevent aggregation: trace elements allow aggregation, e.g. Zn in insulin
 - Take up adsorption sites to reduce surface adsorption
 - Inhibit aggregate formation
 - Inhibit thermal induced inactivation: neutral amino acids like glycine protect the formulation if heated

- **Fatty acids & phospholipids**
 - 7-8 carbon length is optimal
 - Liposomal systems help stabilize proteins and peptides through nonpolar interactions
 - Protection of non-polar portion of protein interacting with non-polar lipid (emulsifiers for lipids are phospholipids)

- **Surfactants**
 - Charged surfactants (cationic/anionic) cause denaturation
 - Non-ionic surfactants stabilize by reducing interfacial tension
 - Reduce tendency for protein to unfold, help retain structure
 - Examples: Tween 80, Brij, poloxamer)

- **Metals**
 - Ca\(^{2+}\) and Cu\(^{3+}\) stabilize proteins
 - Bridge between disulfide bonds: helps stabilize bonds and tertiary structure

- **Polyols**
 - Polyhydroxyl groups: carbohydrates, sorbitol, mannitol, glycerol
 - Used in lyophilized dosage forms to prevent aggregation by adding bulk
 - Aids reconstitution: polyols are very water soluble, help the water get to the amino acid very quickly
 - Protects against oxidation
 - Strengthens intra hydrophobic bonds by reducing the interaction between water and protein
 - Humectant: helps hydrate the protein for protection and stabilization

- **Reducing agents**
 - Reduce disulfide bond formation, which tends to lower protein activity
 - Agents: glutathione, thioethanolamine, thiodiglycol, thioacetic acid, N-acetylcysteine

- **Chelating agents**
 - Problem: Cu, Fe, Ca, Mn act as catalysts in oxidation reactions by using up the oxygen
 - Chelating these metals help stabilize the formulation by using up the active sites on the metals
 - Agents: EDTA, diNa, CadiNa, tetraNa

- **Miscellaneous**
 - Hydrolyzed gelatin: available amino acids
 - Ammonium sulfate: adjusts pH