VOCABULARY TO KNOW

- **ISOSMOTIC**: two solutions that have the same osmotic pressure
- **ISOTONIC**: a solution possessing the same osmotic pressure as intracellular fluid → limited to solutions where cells neither swell nor shrink (also called “tonicic”)
- **HYPOTONIC**: cause cells to swell
- **HYPERTONIC**: cause cells to crenate; can be used to draw fluids out of edematous tissues and into the administered solution
- This is an effect of a colligative property of solutions

COLLIGATIVE PROPERTIES change based only on the NUMBER of particles in solution:
1. Osmotic pressure
2. Freezing point depression (very easy to do, used to determine osmotic pressure)
3. Boiling point elevation
4. Vapor pressure lowering

NON-ELECTROLYTES: glucose (=dextrose), all sugars, urea

1g MW of *any* non-electrolyte dissolved in 1000g of water lowers the freezing point by 1.86°C

How many molecules in 1g MW?
Avogadro’s number = \(6.023 \times 10^{23} \) molecules ↩ not the avocado number!

NEED TO MW:
- Dextrose = 180amu
- NaCl = 58.5amu (23+35.5)

Both *lachrymal fluid* and *blood serum* lower the freezing point by only 0.52°C (f.p. = -0.52°C)

For glucose:
- 180g/1.86°C = Xg/0.52°C
- X = 50.3g of dextrose/L
- ~50g/1000ml = 5g/100mg = 5% ↩ D5W
- D5W is isotonic (not necessary isosmotic)
- NaCl 0.9% is both isotonic and isosmotic

Only for non-electrolytes:
- 1g MW/1.86°C = Xg MW/0.52°C
- X = 0.27957g MW → 0.280M of any non-electrolyte will be isotonic with RBCs

This is the nice thing about non-electrolytes since they don’t carry any charge

0.280M = 280mM = 280mOsm

By definition, 1mM = 1mOsm

Another non-electrolyte: UREA
- MW = 60amu
- 60g/1.86°C = Xg/0.52°C
- X = 16.77g → 16.8g/L = 16.8g/1000ml = 1.68g/100ml = 1.68%

Sounds a lot less than dextrose because it weighs 1/3
But this urea solution has the same number of particles as that of dextrose

For dextrose, we need a 5% solution to be isotonic but for urea we only need 1.68% solution to be isotonic
GENERAL RULE
For ALL non-electrolytes (no exceptions, ladies & gentlemen), 0.280M solution will be 280mM or 280 mOsm in concentration

Only charged particles have mEq (therefore, non-electrolytes will not have mEq)

<table>
<thead>
<tr>
<th>SOLUTION</th>
<th>mM</th>
<th>mEq</th>
<th>mOsm</th>
</tr>
</thead>
<tbody>
<tr>
<td>D5W</td>
<td>280</td>
<td>-</td>
<td>280</td>
</tr>
<tr>
<td>D10W</td>
<td>560</td>
<td>-</td>
<td>560</td>
</tr>
</tbody>
</table>

ISOTONICITY // Electrolytes

Because osmotic pressure depends only on the number of particles (and not the kind), substances that dissociate have a tonic effect that increases with the degree of dissociation; the greater the dissociation, the smaller the quantity required to produce any given osmotic pressure.

Electrolytes dissociate

NaCl <-> Na+ + Cl- + NaCl
100# 80 + 80 + 20 = 180
100 molecules -> 180 particles or 1.8x

Na = 23amu, Cl = 35.5amu -> NaCl = 58.5amu
\[
\frac{58.5 \text{g NaCl}}{(1.86^\circ \text{C})(1.86^\circ \text{C})} = \frac{x \text{g NaCl}}{0.52^\circ \text{C}}
\]
\[
\frac{58.5 \text{g}}{3.348} = \frac{x \text{g}}{0.52^\circ \text{C}}
\]
\[
x = 9.086 \text{g/L} = 0.9%
\]

Therefore,

\[\frac{(\text{g MW of an electrolyte})(0.52^\circ \text{C})}{(1.86^\circ \text{C})(\text{Ionization constant})} = \frac{x \text{g/L}}{\text{needed to make an isotonic solution}}\]

Ionization constant, i

For all non-electrolytes, e.g. dextrose, the i=1
For electrolytes that do NOT dissociate well, e.g. boric acid H3BO4, i=1
For electrolytes that dissociate into 2 particles, e.g. NaCl, i = 1.8
For electrolytes that dissociate into 3 particles, e.g. CaCl2, i=2.6
For electrolytes that dissociate into 4 particles, e.g. AlCl3, i=3.4

CaCl2 <-> Ca2+ + 2Cl- + CaCl2
100 80 160 20 = 260 i=2.6

AlCl3 <-> Al3+ + 3Cl- + AlCl3
100 80 240 20 = 340 i=3.4

Prepare a 1% (w/v) atropine sulfate and make isotonic with NaCl
1% At2SO4 = 1g/100ml
MW=695amu
At2SO4 -> 2 At+ + SO42- + At2SO4
100 2 1 2
\[i=2.6\]

RULE:
The quantity of 2 substances that are tonicic equivalents are proportional to the MW of each multiplied by the i value of the other.
How many grams of NaCl the At_2SO_4 is equivalent to

$$\frac{1251}{152.1}x = 0.12 \text{g NaCl}$$

1g of At_2SO_4 behaves as if it is 0.12g NaCl in water (because it doesn’t dissociate as well)

How many grams of NaCl are in 100ml of N.S.?

0.9% = 0.9g/100ml

But I want to make it isotonic with atropine drug + NaCl

0.9g – 0.12g “At_2SO_4” = 0.78g NaCl needed

Look at pg. 161 at Table 11.1 “Sodium Chloride Equivalents (E values)” for other drugs

Another way to do it:

1g At_2SO_4 + DDW + qs ad to 100ml with N.S.

0.9% - 0.9g NaCl = 0.78g NaCl

$$\frac{78}{0.9}x = 86.67 \text{ml}$$

100ml - 86.67ml = 13.3ml DDW

Dissolve 1g of atropine sulfate in 13.33ml DDW and then qs ad to 100ml with N.S. to make an isotonic solution

MILLIEQUIVALENTS

Denotes amount of chemical activity of an electrolyte

You may run into: EqWt (g MW of compounds) and mEqWt (mg MW of compounds)

We usually only deal with mEq (not Eq)

DEFINITION of mEq

$$\text{mEq Wt} = \frac{\text{milliMW}}{\text{Total} \pm \text{charge}}$$

mEq Wt = mMWW

NaCl mEq Wt = 58.5mg/1 charge (amu \rightarrow mg)

KCl mEq Wt = 74.5mg/1 charge K = 39, Cl = 35.5 \rightarrow KCl = 74.5

CaCl$_2$ mMWW Ca = 40, Cl = 35.5 \rightarrow CaCl$_2$ = 111.0amu anhydrous

CaCl$_2$ mEq Wt = $\frac{111\text{mg}}{2}$ charges = 55.5mg/mEq

mEq Wt will always be equal to or less than mMWW

If it is less than, it will be by the factor of the charge

1g MW KCl \leftrightarrow K$^+$ + Cl$^-$

1 Av # 1 Av # of + 1 Av # of –

1g MW CaCl$_2$ \leftrightarrow Ca$^{2+}$ + 2Cl$^-$

1 Av # 2 Av # 2 Av #

EqWt of CaCl$_2$ of MW/2 \leftrightarrow Ca$^{2+}$ + 2Cl$^-$

$\frac{1}{2}$ Av # of molecules 1 Av # of + 1 Av # of –
OSMOLARITY: of serum is 275-295 mOsm/L

OSMOLALITY: of serum is 275-295 mOsm/kg

For non-electrolytes: 1 mM = 1 mOsm
For electrolytes, the total number of particles depends on the degree of dissociation of the solute in question.

If we assume 100% dissociation:

For NaCl:
1 mM NaCl → Na⁺ + Cl⁻
1 mOsm 1 mOsm

For CaCl₂:
1 mM CaCl₂ → Ca²⁺ + 2Cl⁻
1 mOsm 2 mOsm

For Na₃Citrate:
1 mM → 3 Na⁺ + 1 Citrate
3 mOsm 1 mOsm

Osmolarity goes up much faster in electrolytes.

How many mOsm are in D5W (non-electrolyte)?
5% = 5g/100ml = 50g/1000ml x 1Osm/180g(1mol) = 0.277 Osm/L
0.277Osm/L x 1000mOsm/Osm = 280 mOsm/L

50g = 50000mg x 1 mOsm/180mg = 277.7 mOsm/L

1 liter of 0.9% NaCl = N.S.
0.9% = 0.9g/100ml = 9g/1000ml
NaCl = 58.5 amu

How many mEq of NaCl/L?
9g = 9000 mg/L x mEq/58.5mg = 154 mEq/L

mEq Wt = mM/MMW / (total+/total-)

How many mOsm of NaCl/L?
If we assumed 100% dissociation:
9000mg x mM x 2 mOsm = 307.7 mOsm/L
L 58.5mg mM

If we assume 80% dissociation:
9000mg x mM x 1.8 mOsm = 277 mOsm/L
L 58.5mg mM

→ which is close enough to 308, so we are allowed to assume 100%

Isotonic: 280 – 310 mOsm/L
Hypotonic: < 280 mOsm/L
Hypertonic: > 310 mOsm/L

Direct relationship between:
- mM and mOsm
- mM and mEq

No charge → No mEq
mMW > mEq

mEq is charge, mOsm is # of particles
You can’t calculate mOsm/L without being given the volume

<table>
<thead>
<tr>
<th>SOLUTION</th>
<th>mM</th>
<th>mEq</th>
<th>mOsm</th>
<th>mOsm/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1L D5W</td>
<td>280</td>
<td>-</td>
<td>280</td>
<td>280</td>
</tr>
<tr>
<td>1L D10W</td>
<td>560</td>
<td>-</td>
<td>560</td>
<td>560</td>
</tr>
<tr>
<td>½ L D5W</td>
<td>140</td>
<td>-</td>
<td>140</td>
<td>280</td>
</tr>
<tr>
<td>N.S.</td>
<td>154</td>
<td>154</td>
<td>308</td>
<td>308</td>
</tr>
<tr>
<td>NaCl</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>KCl</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Ratios</td>
<td>15</td>
<td>30</td>
<td>45</td>
<td>-</td>
</tr>
<tr>
<td>Mg²⁺SO₄²⁻</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Ca₃²⁺(citrate)₃⁻</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>½L D5W + ½ L N.S. (=1L solution)</td>
<td>140+77</td>
<td>0+77</td>
<td>140+154</td>
<td>294 Isotonic</td>
</tr>
<tr>
<td>SVP (1:1:2)</td>
<td>40</td>
<td>40</td>
<td>80</td>
<td>4000 Hypertonic</td>
</tr>
<tr>
<td>40mEq KCl/20ml</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Take SVP and add to LVP</td>
<td>280+40</td>
<td>0+40</td>
<td>280+80</td>
<td>352</td>
</tr>
<tr>
<td>=320</td>
<td>=40</td>
<td>=360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL D5W/N.S. Hypertonic because smaller volume Add 15ml KCl (40mEq/20ml) 1:1:2</td>
<td>280+154</td>
<td>0+154</td>
<td>380+308</td>
<td>588</td>
</tr>
<tr>
<td>=434</td>
<td>=154</td>
<td>=588</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+30</td>
<td>+30</td>
<td>+60</td>
<td>638.4</td>
<td></td>
</tr>
<tr>
<td>=464</td>
<td>=184</td>
<td>=648</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1L D10W/0.2% N.S. Add MgSO₄ – 20mEq 10mEq/30ml Add Ca(Glu)₂ – 30mEq (30mEq/20ml)</td>
<td>560+38.5</td>
<td>0+38.5</td>
<td>560+77</td>
<td>637</td>
</tr>
<tr>
<td>=598.5</td>
<td>=38.5</td>
<td>=637</td>
<td>637</td>
<td></td>
</tr>
<tr>
<td>+10</td>
<td>+20</td>
<td>+20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>=608.5</td>
<td>=58.5</td>
<td>=657</td>
<td>632</td>
<td></td>
</tr>
<tr>
<td>+15</td>
<td>+30</td>
<td>+45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>=623.5</td>
<td>=88.5</td>
<td>=702</td>
<td>662</td>
<td></td>
</tr>
<tr>
<td>NS 0.9%</td>
<td>154</td>
<td>154</td>
<td>308</td>
<td>308</td>
</tr>
<tr>
<td>½ NS 0.45%</td>
<td>77</td>
<td>77</td>
<td>154</td>
<td>154 Hypo</td>
</tr>
<tr>
<td>¼ NS 0.2%</td>
<td>38.5</td>
<td>38.5</td>
<td>77</td>
<td>77 Hypo</td>
</tr>
<tr>
<td>MgSO₄ 10mEq/20ml</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>500 Hyper</td>
</tr>
<tr>
<td>Ca₃(citrate)₂</td>
<td>10</td>
<td>60</td>
<td>50</td>
<td>-</td>
</tr>
<tr>
<td>MgSO₄ 17.5</td>
<td>35</td>
<td>35</td>
<td>500 Hyper</td>
<td></td>
</tr>
<tr>
<td>KCl</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>-</td>
</tr>
</tbody>
</table>

Add isotonic to isotonic = ALWAYS isotonic
Hypertonic + isotonic = hypertonic
Hypotonic + isotonic = hypotonic
Hypotonic + hypertonic = who knows

Decision to go central vs. peripheral under the risk of causing phlebitis:
600 mOsm is the borderline ← depends on how long
(some say 800 mOsm)