Parenteral Nutrition

Indications for parenteral nutrition

- **Patients who cannot eat**
 - Ileus: large intestine shuts down to protect itself, after major surgeries
 - Obstruction of small intestine: NPO for at least 5 days

- **Patients who should not eat**
 - High output enterocutaneous fistula: surgeon accidentally nicks intestine → hairline sliver → ↑temp + ↑WBC + small stream flowing from intestine
 - Inflammatory bowel disease: Crohn’s, ulcerative colitis
 - Acute pancreatitis: any food or water will aggravate it
 - Radiation therapy: disrupts GI motility
 - Major abdominal surgery

- **Patients who cannot eat enough**
 - Surgery
 - Hyperemesis gravidarum: occurs during 2nd or 3rd trimester of pregnancy → uterus press on ab → N/V
 - Short bowel syndrome: ↓absorption
 - Chemotherapy: disrupts GI motility, can causes stomatitis, severe vomiting & diarrhea

Routes of administration

<table>
<thead>
<tr>
<th>TPN</th>
<th>total parenteral nutrition</th>
<th>PPN</th>
<th>peripheral parenteral nutrition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central venous access via inferior vena cava</td>
<td>Peripheral venous access via a peripheral vein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long term therapy > 2 weeks</td>
<td>Short term therapy < 2 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allows high nutrient conc & high osmolality (up to 35%D5W)</td>
<td>Limits macronutrient conc, max osmolality <900mOsm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Able to fluid restrict (e.g. for renally impaired pts)</td>
<td>Inadequate source of calories</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Potential complications

- **Mechanical complications**: pneumothorax, hemothorax, hydrothorax, intravascular misplacement, catheter embolization, air embolism, venous thrombosis, thoracic duct injury, internal/external bleeding, phlebitis (PPN)

- **Metabolic complications**
 - Glucose metabolism
 - Hyperglycemia: hyperglycemic hyperosmolar nonketotic coma, need Accuchecks q6hr + continuous insulin infusion if glucose > 400 mg/dL
 - Hypoglycemia: if abruptly stop TPN
 - ↑CO₂ production: pt on mechanical ventilator → dextrose end product CO₂ accumulates
 - Hepatic steatosis: liver biopsy with fat deposits because too much glucose
 - Protein metabolism
 - Azotemia (↑BUN), hyperammonemia
 - Fat metabolism: EFAD, hypertriglyceridemia
 - Electrolyte disturbances
 - Refeeding syndrome: severely stressed malnourished patients if give too much initially
 - Hypokalemia, hypophosphatemia, hypocalcemia, hypomagnesemia
 - Acid-base disturbances
 - Septic complications: due to improper catheter placement
 - Hypovitaminosis, trace element deficiency: prevent by giving MVI-12 + MTE-4 to all patients
 - Abnormalities of liver functions: due to high glucose infusion rate (>4-5 mg/kg/min), imbalanced AA solution, lacking essential AA, tryptophan degradation products in liver failure patients, EFAD, excess lipid emulsion admin
Substrate intolerance in parenteral nutrition

<table>
<thead>
<tr>
<th>Complications</th>
<th>Possible causes</th>
<th>Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperglycemia</td>
<td>Stress, infection, corticosteroids, pancreatitis, diabetes, peritoneal dialysis, excessive dextrose admin</td>
<td>↓Dextrose load (↓infusion rate or ↓concentration), ↑calories from fat, admin insulin</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>Abrupt dextrose withdrawal, insulin overdose</td>
<td>↑Dextrose intake, ↓insulin</td>
</tr>
<tr>
<td>Excess CO₂ production</td>
<td>Excess dextrose intake</td>
<td>↓Dextrose intake, balance calories from fat & dextrose</td>
</tr>
<tr>
<td>Hypertriglyceridemia</td>
<td>Stress, pancreatitis, excess IVLE dose, rapid IVLE infusion rate</td>
<td>↓IVLE dose, ↓IVLE infusion rate, d/c IVLE</td>
</tr>
<tr>
<td>Abnormal LFTs</td>
<td>Stress, infection, cancer, excess carb intake, excess calorie intake, EFAD</td>
<td>↓Dextrose load, ↓total calories, EFA</td>
</tr>
</tbody>
</table>

Monitoring parameters

- Intake: nutritional intake, fluid input/output
- Labs: electrolytes, glucose, serum proteins, ABG, CBC + differential, PT/PTT, INR
- Renal: BUN, SCr, 24hr urine collection (UUN, creatinine)
- Vital signs, daily weights
- Frequency of monitoring: baseline + long term to maximize therapy

Ordering parenteral nutrition

- Assess for specialized nutrition support
- Calculate caloric + amino acid requirements
- Start solution at 42-63 mL/hr
- Order Accuchecks q6hr + regular insulin sliding scale
- Advance solution to goal rate as tolerated
- Order 24hr urine collection for UUN within 5 days → assess nitrogen balance
- Add electrolytes according to guidelines on day 1 → from day 2 on, adjust according to labs
- Check for drug – nutrient interactions
- Order labs as indicated

Solution stability

- **Base solution**: admin immediately, refrigerate within 1 hr, use within 24hrs if refrigerated, protect from light, okay to stockpile if don’t add MVI/MTE
- **3-in-1 TNA** (total nutrient admixture): good for 14 days refrigerated without MVI, don’t use in-line filter due to lipids
- **Nutrient & drug additives**
 - Insulin
 - Albumin: never used
 - Calcium & phosphate salts
 - Ca x P <45 mEq/L
 - Precautions: add phos first then Ca, ↓pH helps ↓precipitation, use CaGluconate (not CaCl), avoid Y-site infusion, avoid room temp
 - Vitamins (in multidose vials): stable for 48hrs refrigerated, 24hrs at room temp
 - Heparin: generally not recommended, sometimes used in long term care (1000-2000U)

TPN osmolarity

- **Cations**: total mEq/L x 2
- **Dextrose/L**: total g x 5
- **AA/L**: total g x 10
- Sum of all these to get mOsm/L
- If high osmolarity → central line