H₂ block | Histamine Receptor Antagonists

- **Agents:** cimetidine (Tagamet), ranitidine (Zantac), famotidine (Pepcid), nizatidine (Axid)
- **Histamine structure**
 - Two pKa’s: aliphatic pKa 9.4 + aromatic pKa 5.8
 - Equilibrium of two tautomeric structures: Nτ (aqueous) + Nτ (crystal salt)
 - Nτ tautomer is required for binding to H₂ receptors
 - Hydrophilic molecule
- **Biosynthesis**
 - L-histidine → histamine by two enzymes: L-histidine decarboxylase (specific, Vit B6 cofactor) or L-aromatic amino acid decarboxylase (non-specific)
 - Degraded by two pathways: N1-methylation + MAO oxidation or nonspecific oxidative deamination
- **Histamine receptors:** four types
 - H₁ → allergies
 - H₁ antagonist: basic nitrogen group (binds to anionic binding site) + 2 aromatic groups
 - Second generation H₁ antagonists: terfenadine, astemizole, fexofenadine, cetirizine
 - 2 hydroxy groups → ↑water solubility + ↓BBB penetration → ↓CNS sedation
 - Bulky groups on basic nitrogen → (−)binding to anionic site of M receptor → ↓anti-ACh effects
 - H₂ → stomach acid secretion
 - Compared to H₁: H₂ antagonists are ↑hydrophilicity (↓CNS effects) and do not have anti-ACh effects
 - H₃ → CNS effects e.g. antiepileptic and attention
 - H₄
- **Cimetidine SAR**
 - Substituted guanidine: guanidine group binds through bidentate bond to hydrophobic pocket
 - Nitrile group: -e- withdrawing group attracts e- from guanidine making it less basic → less protonated under physiological conditions → free to form bidentate bonds
 - Imidazole ring: binds well to histamine receptors, ↑affinity for receptor but is not essential
 - SE caused by imidazole ring: liver enzyme inhibition, antiandrogenic properties
 - Can replace imidazole ring with other aromatic/heteroaromatic groups to ↓SE
 - Methyl & thiomethylene groups: stabilize Nτ tautomer structure to ensure potency
- **Ranitidine, famotidine, nizatidine > cimetidine**
 - ↑Binding of basic moiety to receptors → ↑potency
 - Nizatidine: bioavailability not affected by concurrent antacid administration

PPIs | Proton Pump Inhibitors

- **Agents:** omeprazole (Prilosec), lansoprazole (Prevacid), pantoprazole (Protonix), rabeprazole (Aciphex), esomeprazole (Nexium), dexlansoprazole (Dexilant)

<table>
<thead>
<tr>
<th>Omeprazole</th>
<th>Lansoprazole</th>
<th>Esomeprazole</th>
<th>Pantoprazole</th>
<th>Rabeprazole</th>
<th>Dexlansoprazole</th>
</tr>
</thead>
<tbody>
<tr>
<td>1° PPI; liver enzyme inhibitor</td>
<td>Racemate of omeprazole; liver enzyme inhibitor</td>
<td>S-isomer of esomeprazole, better control of intragastric pH</td>
<td>Most potent PPI</td>
<td>Faster onset of action</td>
<td>Dual delayed release: fast (1-2hr) + slow (4-5hr)</td>
</tr>
</tbody>
</table>

- **Prodrugs:** weak bases that require activation in acid environment
 - Enteric coated: prevents degradation in stomach → slower release
 - Also available as IV formulations
- **MOA:** irreversibly inhibit H⁺/K⁺ ATPase of the proton pump in the acid secretory pathway
 - Irreversible inhibition → body needs to re-synthesize new pumps → long duration of action
- **Revaprazan (in clinical trials):** reversible H⁺K⁺ ATPase inhibitor that binds K⁺ binding site of proton pump, rapid onset

PGE₂ Analogues | Stable Prostaglandin Analogues

- **Agents:** misoprostol (Cytotec), enprostil (Gardrin), ornoprostil (Allca, Ronok), benexate (Lonmiel)
 - Carboprost, sulprostone: abortificients
 - Latanoprost (Xalatan): anti-glaucoma agent to treat IOP
- **Biosynthesis of prostanoids:** synthesized from arachidonic acid via two COX enzymes
• Prostanoid receptors: 9 total
 o 3 types coupled to mobilization of intracellular Ca → inflammation, uterine stimulation, IOP, platelet aggregation
 o 5 types coupled to ↑cAMP levels → bronchodilation, antiplatelet aggregation, cytoprotection
 o 1 type associated with ↓cAMP accumulation → cytoprotective, antisecretory, uterine stimulation

• Misoprostol: cytoprotective properties
 o MOA: (+)EP3 receptors \(\rightarrow \) (–)cAMP formation \(\rightarrow \) (–)Ca & HCl release from parietal cell
 o Pharmacokinetics: rapidly absorbed & metabolized to active free acid
 o SE: diarrhea (EP1 or EP3 mediated), uterine contraction (EP3 mediated)

• Enprostil:
 o more potent at EP3 receptors than misoprostol, greater affinity at EP1 receptors

• Benexate (Japan only):
 o cytoprotective but non-prostaglandin-like, treats ulcers induced by indomethacin or stress

Gastric Antagonists

• Gastrointestinal peptidic hormone that stimulates gastric secretion
 o Vagal stimulation + gastrin \(\rightarrow \) (+)histamine release from enterochromaffin-like cells

• S-0509:
 o novel gastrin receptor antagonist that enhances healing of ulcers and has antisecretory effects

• Theoretical acid secretion control was shown to lose clinical efficacy after just a few days

Somatostatin Analogues

• 14 aa peptide release in GI tract and pancreas from paracrine cells, D-cells, enteric nerves, & hypothalamus
 o Many inhibitory actions: (–)gastric acid secretion, pepsinogen secretion, gastrin, motilin, etc.
 o Pharmacokinetics: very short plasma t½ due to degradation by peptidases
 o Octreotide (Sandostatin): analogue of somatostatin that is more metabolically stable
 o Treats acromegaly, neutralizes pH, treats esophageal variceal bleeding

Antimicrobial Agents | H. pylori

• H. pylori: gram negative bacteria that uses urease to prosper in highly acid stomach
 o Urease: breaks down urea to NH₃ + CO₂ \(\rightarrow \) ↓ acidity
 o Microaerophilic: likes low oxygen environments
 o Develops resistance quickly \(\rightarrow \) need a cocktail of agents and ↑ferredoxin

• Antimicrobial agents:
 o metronidazole, amoxicillin, tetracycline, macrolides (clarithromycin, azithromycin, erythromycin)
 o Metronidazole: active against most anaerobic bacterial infections
 o Microbial reduction of CS nitro group \(\rightarrow \) forms labile & chemically reactive intermediates \(\rightarrow \) intermediates covalently bind to DNA \(\rightarrow \) triggers lethal effect
 o Considered a prodrug because requires metabolic activation
 o Flavoproteins catalyze reduction of aromatic nitro group to amine

Prokinetic Agents

• Enhances GI motility & transit: ↓esophageal sphincter pressure in GERD, ↑gastric emptying, stimulate small intestine

• Dopamine D2 receptor antagonists
 o Agents: metoclopramide (Reglan), domperidone (Motilium)
 o MOA: 5-HT4 receptor agonism, central 5-HT3 receptor antagonism, dopamine receptor antagonism
 o Actions: ↑esophageal peristaltic amplitude, ↑lower esophageal sphincter pressure, ↑gastric emptying
 ▪ No effect on small intestine or colonic motility
 ▪ Other effects: block CTZ \(\rightarrow \) antinausea & antiemetic action
 o Domperidone: ↑hydrophilicity, ↓EPS, ↓bioavailability, not available in US

• Serotonin receptor antagonists
 o 5-HT3 receptors act in GI motility, secretion, and sensation (e.g. signaling of digestive reflexes, satiety, pain, discomfort from gut)
 o Gut distention \(\rightarrow \) enterochromaffin cells release 5-HT \(\rightarrow \) (+)IPANS \(\rightarrow \) (+)enteric neurons + release of ACh \(\rightarrow \) (+)peristaltic & secretory reflex activity

• 5-HT4 receptor agonists
 o Cisapride: partial 5-HT4 agonist without D2 antagonism (no EPS or CNS adverse effects); induces *torsades*
 o Prucalopride: symptomatic treatment of chronic constipation in women in whom laxatives fail; Europe only
 o Mosapride: treats chronic gastritis, GERD, functional dyspepsia; Japan only
 o Naronapride: metabolized by ubiquitous carboxylesterases to a single metabolites
 o Tegaserod: structurally related to 5-HT, partial 5-HT4 agonist; treats women with IBS constipation
Pumosetrag: locally acting 5-HT3 partial agonist; treats IBS constipation & nocturnal GERD; phase II trials

Chloride Channel Activators

- **Lubiprostone (Amitiza)**
 - (+) Specific chloride channel in GI tracts \rightarrow ↑GI secretions \rightarrow ↑H₂O + ↑Na \rightarrow ↑GI transit
 - Indication: chronic idiopathic constipation, when all else fails
 - Pharmacokinetics: minimal systemic absorption, metabolized in lumen of GI tract

μ-Opioid Antagonists

- **Alvimopan (Entereg)**
 - Indication: post operative ileus under REMS
 - Zwitterionic form + polarity \rightarrow limits GI absorption + prevents BBB passage \rightarrow only peripherally acting

Laxatives

- Types of laxatives: bulk forming, osmotic, stool surfactants, and stimulants
- **Stimulant laxatives**
 - Anthraquinones: naturally occurring in plants (e.g. cascara, senna, aloe)
 - MOA: glycosides not absorbed by gut \rightarrow transported to colon \rightarrow bacteria act on it \rightarrow hydrolyze glycoside bond \rightarrow reduce anthraquinones to anthrones \rightarrow (−)Na+K+ pump \rightarrow ↑watery stool
 - Onset of action: delayed 6-8 hours after po dose
 - Potential for abuse: only use short term

IBD Drugs

- Current IBD treatments try to suppress inflammatory process
- Common drugs: mesalamine derivatives, corticosteroids, immunomodulators, biological response modifiers
- **Mesalamine derivatives (5-ASA):** rectal suspension enema has local effects, blocks COX, (−)prostaglandin synthesis in colon
- **Osalazine:** 5-ASA dimer linked by azo bond \rightarrow converted to active ASA by bacteria in lower intestine
- **Sulfasalazine:** mesalamine + sulfapyridine \rightarrow converted to active ASA by bacteria in lower intestine
- **Biologic therapy:** anti-TNFα agents (e.g. infliximab, etanercept)