Acute Leukemia | AML + ALL

AML | Acute Myeloid Leukemia

- **Epidemiology:** high mortality, generally older patients (>60 y/o)
- **Risk factors:** genetic predisposition, acquired bone marrow diseases, occupational/environmental exposure
- **Secondary AML:** therapy-related AML, often caused by alkylating agents & topo II inhibitors
 - Alkylating agents: cyclophosphamide, melphalan, nitrogen mustards → 4-8 year latency period
 - Topo II inhibitors: etoposide → 1-3 year latency period → more difficult to treat
- **Classification**
 - FAB | French American British: only tell which stage of differentiation is affected
 - WHO | World Health Organization
 - Based on cytogenetics, morphology, and history
 - AML: ≥20% blasts, or less blasts but with poor prognostic cytogenetics
- **Clinical presentation**
 - Constitutional & non-specific: fever, weight loss, anorexia
 - Impaired hematopoiesis (effects on myeloid cell line): anemia, thrombocytopenia, neutropenia
 - Leukostasis: WBC > 100K → aggregation & clumping → affects mostly brain & lungs → hypoxemia & hemorrhage
 - Manifestations: headache, blurred vision, MI, dyspnea, transient ischemic attacks, strokes, mental status
 - CNS involvement more common in lymphoblastic leukemias (ALL, CLL)
 - Tumor lysis syndrome: ↑ breakdown products of dying cancer cells
 - Release of cell contents → ↑LDH, ↑K, ↑Phos, ↑uric acid, ↑Scr, ↓Ca → nephropathy & renal failure
 - Commonly seen in poorly differentiated hematologic disorders: Burkitt’s, ALL, AML
 - Risk factors: ↑WBC, ↑blasts, chemo sensitive disease, initiation of therapy
 - Triggers: chemo, steroid treatment, or spontaneous
 - Prevention: allopurinol or rasburicase (↓urate production), IV hydration (↑high urine output)
 - DIC | disseminated intravascular coagulation
 - Small blood clots throughout body → small clots consume normal coagulation proteins & platelets → disrupt normal coagulation + normal blood flow to organs → abnormal bleeding + organ damage
 - Seen in M3 APL or M5 AML
 - Monitor: fibrinogen, PT/PTT
- **Prognostic factors**

<table>
<thead>
<tr>
<th>Favorable ☺</th>
<th>Poor ◻ ◻</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(15;17), inv(16), (t;8;21)</td>
<td>Inv(3), del(5), del(7), t(6;9), t(9;22)</td>
</tr>
<tr>
<td>Age<60, good performance status, no MDS or prior malignancy</td>
<td>Age≥60, poor performance status, MDS or prior malignancy, CNS involvement, systemic infection, WBC>100K, CD32 pos, MDR1 overexpression, M6 & M7 FAB subtypes, ↑LDH</td>
</tr>
</tbody>
</table>

- **Diagnosis**
 - Labs: CBC + diff, uric acid, phos, Ca
 - Histology: peripheral blood smear, bone marrow biopsy, aspirate
 - Definitive diagnosis (acute vs. chronic, myeloid vs. lymphoid) needed before treatment
- **Treatment**
 - Curative intent: very aggressive regimens, goal to induce remission, initiate treatment ASAP
 - Two phases: induction & post-remission therapy
 - **Induction therapy**
 - Goal: induce a complete remission by eradicating clone & restoring normal hematopoiesis
 - Bone marrow is assessed 14 days after induction therapy
 - Complete remission criteria: no peripheral leukemia cells, ANC>1K, platelets>100K, bone marrow cellularity>20%, blasts<5%, no extramedullary leukemia
 - **7+3 regimen = Cytarabine + daunorubicin**
 - 7 days of cytarabine continuous infusion: 24hrs/7days @ 100-200 mg/m² IVPB
 - 3 days daunorubicin (or any anthracycline) @ 45-90 mg/m² IV
 - Doses may be higher for younger patients → better overall survival
 - Complications: tumor lysis syndrome, myelosuppression (surrogate for efficacy)
 - **Post-remission therapy**
 - Goal: eliminate undetectable residual leukemia cells in order to maintain remission
• Poor risk patients: **allogeneic stem cell transplant**
• Intermediate or good risk: HIDAC regimen
 o **HIDAC = high dose cytarabine**
 o Cytarabine 3 g/m³ q12hr (days 1, 3, 5) for 3-4 cycles
 o Complications
 • **Neurotoxicity & ocular toxicity** — distributes in TBW (e.g. CNS fluid, tear fluid)
 - Neuro: cerebellar dysfunction e.g. ataxia, nystagmus, dysarthria
 - Ocular: conjunctivitis — prophylaxis with dexamethasone eye drops
 • **Myelosuppression**: anemia, thrombocytopenia, neutropenia
 - Anemia: transfusion if Hgb < 8 g/dL
 - Thrombocytopenia: transfusion if platelets < 10K cells/mm³
 - Neutropenia (e.g. febrile neutropenia): high risk of infection, need prophylactic po antibiotics if prolonged (<100 cells/mm³ for >2 weeks), recommend CSF if >55 y/o
 • **Tumor lysis syndrome**: prevent with allopurinol & fluids

• **APL | Acute Promyelocytic Leukemia**
 o **Subtype of AML**: best prognosis, most curable form of AML
 o t(15;17) — accumulation of promyelocytes (immature granulocytes) in bone marrow → ↓ normal RBCs & platelets → anemia & thrombocytopenia & ↑ bleeding
 o Symptoms & complications: SOB, fatigue, bruising, bleeding, fever, infection, splenomegaly
 o **Fatal complication: DIC**
 - APL results in DIC because the promyelocytes are packed with granules that release tissue factor & activate the coagulation cascade
 - Monitoring parameters: fibrinogen, PT/PTT
 o **Treatment**
 - Without treatment, APL is fatal → treat STAT
 • **Induction: ATRA**
 - ATRA | all trans retinoic acid
 - Vitamin A analog that induces differentiation & maturation of promyelocytes until apoptosis
 - Complications: **retinoic acid syndrome**
 - ↑ Cells bursting — cytokine release & capillary leak — cardiogenic & respiratory distress
 - Signs & symptoms: unexplained fever, weight gain, respiratory distress, interstitial pulmonary infiltrates, pleural or pericardial effusions
 - Leukocytosis risk: do not start if WBC > 10K, need cytoreduction first
 - Treatment: discontinue ATRA, start dexamethasone 10mg bid for ≥3 days
 - **Consolidation**: idarubicin or daunorubicin for 2 cycles while continuing ATRA
 - **Maintenance**: ATRA + mercaptopurine + MTX
 - **Refractory/relapse**: arsenic
 - MOA: arsenic degrades fusion protein → induces differentiation & apoptosis
 - Indication: induction & consolidation in APL patients refractory/relapsed from ATRA or chemo and with t(15;17), or elderly patients who cannot tolerate ATRA & anthracyclines
 - Toxicities: QT prolongation (monitor EKG), retinoic acid syndrome

• **ALL | Acute Lymphoblastic Leukemia**
 - **Epidemiology**: mostly pediatrics (2-5 y/o) or elderly (>50 y/o), but younger patients have more favorable prognosis
 - **Risk factors**: chemical exposure, genetic conditions
 - **Classification**
 - FAB | French American British
 - WHO | World Health Organization
 - **Mature B-cell**: poor prognosis
 - **Pre-B cell**: intermediate prognosis
 - **Pre-T cell**: good prognosis
 - **Clinical manifestations**
 - **Constitutional (non-specific)**: fever, night sweats, weight loss
 - **CNS involvement**: headaches, mental status changes, more common in lymphoid than myeloid leukemias
 - **Pulmonary**: mediastinal mass, pericardial infusions, more common in T cell than B cell ALL
 - **Sanctuary sites affected**: meninges, spinal cord, testes
 - **Lymphoid organs affected**: splenomegaly, hepatomegaly, lymphadenopathy
 - **Leukocytosis**
• **Diagnosis**: bone marrow morphology (e.g. blast %), cytochemical studies, immunophenotyping (CD_)

• **Prognostic factors**
 - Good prognosis: hyperploidy, del(9p)
 - Poor prognosis: Philadelphia chromosome t(9;22), complex karyotype, t(8;14), testicular relapse

• **Treatment**
 - Curative intent, although relapse is common
 - **Treatment**: four phases, very diverse, systemic & local CNS-targeted, for 2-3 years
 - Principles: young adults should be treated with pediatric-type regimens, standard risk patients benefit from allogeneic stem cell transplant
 - **Induction**
 - Intense combo of a variety of chemo drugs with different MOA & toxicity profiles
 - Agents: anthracyclines, vincristine, corticosteroids, HIDAC, HDMTX, peg-asparaginase (peds)
 - Regimens: hyper-CVAD (hyperfractionated cyclophosphamide, vincristine, doxorubicin, dexamethasone), Larson regimen, targeted agents (imatinib, rituximab)
 - Hyper-CVAD complications: febrile neutropenia, infection, hepatic/renal dysfunction, infertility, pulmonary fibrosis
 - Pediatric protocol complications: liver fibrosis, secondary malignancies, infertility
 - Tyrosine kinase inhibitors: added as backbone, effective on Philadelphia chromosome
 - **CNS prophylaxis**
 - Administration: lumbar puncture or ommaya reservoir
 - Agents: MTX (± hydrocortisone), cytarabine
 - ↑CNS relapse risk: ↑LDH, ↑proliferative index, ↑WBC
 - Standard chemo does not penetrate CNS
 - Intrathecal admin: MTX, cytarabine, hydrocortisone
 - High dose chemo: MTX, cytarabine
 - **Consolidation/intensification**: similar agents as in induction
 - **Maintenance**: monthly treatment with POMP regimen (6-MP, po MTX, vincristine, prednisone)
 - Poor risk patients: induction + stem cell transplant