AML | Acute Myeloid Leukemia

- Epidemiology: high mortality, generally older patients (>60 y/o)
- Risk factors: genetic predisposition, acquired bone marrow diseases, occupational/environmental exposure
- Secondary AML: therapy-related AML, often caused by alkylating agents & topo II inhibitors
 - Alkylating agents: cyclophosphamide, melphalan, nitrogen mustards \rightarrow 4-8 year latency period
 - Topo II inhibitors: etoposide → 1-3 year latency period → more difficult to treat
- Classification
 - FAB | French American British: only tell which stage of differentiation is affected
 - WHO | World Health Organization
 - Based on cytogenetics, morphology, and history
 - AML: ≥20% blasts, or less blasts but with poor prognostic cytogenetics

• Clinical presentation

- o Constitutional & non-specific: fever, weight loss, anorexia
- o Impaired hematopoiesis (effects on myeloid cell line): anemia, thrombocytopenia, neutropenia
- **Leukostasis:** WBC > 100K \rightarrow aggregation & clumping \rightarrow affects mostly brain & lungs \rightarrow hypoxemia & hemorrhage
 - Manifestations: headache, blurred vision, MI, dyspnea, transient ischemic attacks, strokes, mental status
 - CNS involvement more common in lymphoblastic leukemias (ALL, CLL)
- Tumor lysis syndrome: ↑ breakdown products of dying cancer cells
 - Release of cell contents $\rightarrow \uparrow$ LDH, \uparrow K, \uparrow Phos, \uparrow uric acid, \uparrow SCr, \downarrow Ca \rightarrow nephropathy & renal failure
 - Commonly seen in poorly differentiated hematologic disorders: Burkitt's, ALL, AML
 - Risk factors: **\WBC**, **\Delta blasts**, chemo sensitive disease, initiation of therapy
 - Triggers: chemo, steroid treatment, or spontaneous
 - Prevention: allopurinol or rasburicase (\downarrow urate production), IV hydration (\uparrow high urine output)
- DIC | disseminated intravascular coagulation
 - Small blood clots throughout body → small clots consume normal coagulation proteins & platelets → disrupt normal coagulation + normal blood flow to organs → abnormal bleeding + organ damage
 - Seen in M₃ APL or M₅ AML
 - Monitor: fibrinogen, PT/PTT

• Prognostic factors

Favorable 😊	Poor 🙁
t(15;17), inv(16), t(8;21)	Inv(3), del(5), del(7), t(6;9), t(9;22)
Age<60, good performance status,	Age≥60, poor performance status, MDS or prior malignancy, CNS
no MDS or prior malignancy	involvement, systemic infection, WBC>100K, CD32 pos, MDR1
	overexpression, M6 & M7 FAB subtypes, 个LDH

• Diagnosis

- Labs: CBC + diff, uric acid, phos, Ca
- Histology: peripheral blood smear, bone marrow biopsy, aspirate
- o Definitive diagnosis (acute vs. chronic, myeloid vs. lymphoid) needed before treatment

• Treatment

0

- o Curative intent: very aggressive regimens, goal to induce remission, initiate treatment ASAP
 - Two phases: induction & post-remission therapy

Induction therapy

- Goal: induce a complete remission by eradicating clone & restoring normal hematopoiesis
- Bone marrow is assessed 14 days after induction therapy
- Complete remission criteria: no peripheral leukemia cells, ANC>1K, platelets>100K, bone marrow cellularity>20%, blasts<5%, no extramedullary leukemia

• 7+3 regimen = Cytarabine + daunorubicin

- 7 days of cytarabine continuous infusion: 24hrs/7days @ 100-200 mg/m² IVPB
- 3 days daunorubicin (or any anthracycline) @ 45-90 mg/m² IV
- Doses may be higher for younger patients \rightarrow better overall survival
- Complications: tumor lysis syndrome, myelosuppression (surrogate for efficacy)
- Post-remission therapy
 - Goal: eliminate undetectable residual leukemia cells in order to maintain remission

- Poor risk patients: allogeneic stem cell transplant
- Intermediate or good risk: HIDAC regimen
 - HIDAC = high dose cytarabine
 - Cytarabine 3 g/m² q12hr (days 1, 3, 5) for 3-4 cycles
 - Complications
 - *Neurotoxicity* & *ocular toxicity* ← distributes in TBW (e.g. CNS fluid, tear fluid)
 - Neuro: cerebellar dysfunction e.g. ataxia, nystagmus, dysarthria

Not seen in cytarabine induction, only in high

- dose cytarabine regimen
- Myelosuppression: anemia, thrombocytopenia, neutropenia
 - Anemia: transfusion if Hgb < 8 g/dL
 - Thrombocytopenia: transfusion if platelets < 10K cells/mm³
 - Neutropenia (e.g. febrile neutropenia): high risk of infection, need prophylactic po antibiotics if prolonged (<100 cells/mm³ for >2 weeks), recommend CSF if >55 y/o

Ocular: conjunctivitis \rightarrow prophylaxis with dexamethasone eye drops

Tumor lysis syndrome: prevent with allopurinol & fluids

• APL | Acute Promyelocytic Leukemia

- Subtype of AML: best prognosis, most curable form of AML
- t(15;17) → accumulation of promyelocytes (immature granulocytes) in bone marrow → ↓ normal RBCs & platelets
 → anemia & thrombocytopenia & ↑ bleeding
- o Symptoms & complications: SOB, fatigue, bruising, bleeding, fever, infection, splenomegaly
- Fatal complication: DIC
 - APL results in DIC because the promyelocytes are packed with granules that release tissue factor & activate the coagulation cascade
 - Monitoring parameters: fibrinogen, PT/PTT
- Treatment
 - Without treatment, APL is fatal → treat STAT
 - Induction: ATRA
 - ATRA | all trans retinoic acid
 - Vitamin A analog that induces differentiation & maturation of promyelocytes until apoptosis
 - Complications: retinoic acid syndrome
 - \uparrow Cells bursting \rightarrow cytokine release & capillary leak \rightarrow cardiogenic & respiratory distress
 - Signs & symptoms: unexplained fever, weight gain, respiratory distress, interstitial pulmonary infiltrates, pleural or pericardial effusions
 - Leukocytosis risk: do not start if WBC > 10K, need cytoreduction first
 - Treatment: discontinue ATRA, start dexamethasone 10mg bid for ≥3 days
 - Consolidation: idarubicin or daunorubicin for 2 cycles while continuing ATRA
 - **Maintenance:** ATRA + mercaptopurine + MTX
 - Refractory/relapse: arsenic
 - MOA: arsenic degrades fusion protein \rightarrow induces differentiation & apoptosis
 - Indication: induction & consolidation in APL patients refractory/relapsed from ATRA or chemo and with t(15;17), or elderly patients who cannot tolerate ATRA & anthracyclines
 - Toxicities: QT prolongation (monitor EKG), retinoic acid syndrome

ALL | Acute Lymphoblastic Leukemia

- Epidemiology: mostly pediatrics (2-5 y/o) or elderly (>50 y/o), but younger patients have more favorable prognosis
- **Risk factors:** chemical exposure, genetic conditions
- Classification
 - FAB | French American British
 - WHO | World Health Organization
 - Mature B-cell: poor prognosis Pre-B cell: intermediate prognosis

Pre-T cell: good prognosis

• Clinical manifestations

- Constitutional (non-specific): fever, night sweats, weight loss
- o CNS involvement: headaches, mental status changes, more common in lymphoid than myeloid leukemias
- Pulmonary: mediastinal mass, pericardial infusions, more common in T cell than B cell ALL
- Sanctuary sites affected: meninges, spinal cord, testes
- o Lymphoid organs affected: splenomegaly, hepatomegaly, lymphadenopathy
- Leukocytosis

• Diagnosis: bone marrow morphology (e.g. blast %), cytochemical studies, immunophenotyping (CD_)

Prognostic factors

- Good prognosis: hyperploidy, del(9p)
- Poor prognosis: Philadelphia chromosome t(9;22), complex karyotype, t(8;14), testicular relapse
- Treatment
 - Curative intent, although relapse is common
 - Treatment: four phases, very diverse, systemic & local CNS-targeted, for 2-3 years
 - Principles: young adults should be treated with pediatric-type regimens, standard risk patients benefit from allogeneic stem cell transplant
 - Induction
 - Intense combo of a variety of chemo drugs with different MOA & toxicity profiles
 - Agents: anthracyclines, vincristine, corticosteroids, HIDAC, HDMTX, peg-asparaginase (peds)
 - Regimens: hyper-CVAD (hyperfractionated cyclophosphamide, vincristine, doxorubicin, dexamethasone), Larson regimen, targeted agents (imatinib, rituximab)
 - Hyper-CVAD complications: febrile neutropenia, infection, hepatic/renal dysfunction, infertility, pulmonary fibrosis
 - Pediatric protocol complications: liver fibrosis, secondary malignancies, infertility
 - o Tyrosine kinase inhibitors: added as backbone, effective on Philadelphia chromosome
 - CNS prophylaxis
 - Administration: lumbar puncture or ommaya reservoir
 - Agents: MTX (± hydrocortisone), cytarabine
 - 个CNS relapse risk: 个LDH, 个proliferative index, 个WBC
 - Standard chemo does not penetrate CNS
 - o Intrathecal admin: MTX, cytarabine, hydrocortisone
 - High dose chemo: MTX, cytarabine
 - Consolidation/intensification: similar agents as in induction
 - **Maintenance:** monthly treatment with POMP regimen (6-MP, po MTX, vincristine, prednisone)
 - Poor risk patients: induction + stem cell transplant