WOODBURY

Diabetes: later peak, does not return to fasting level (>200 mg/dL)

Prediabetes

- Not quite there yet, but \uparrow risk of: type II, stroke, heart attacks
- Prediabetic pt has one or both of the following:

Page |

- IFG: impaired fasting glucose levels
- IGT: impaired glucose tolerance

(FBG>100-1250mg/L) (After OGT, glucose 1400-2000mg/L)

Extreme diabetic conditions

- >1800mg/L → glucosuria
- >1400mg/L → ketoacidosis
- $>6000 \text{mg/L} \rightarrow$ HHNC: hyperglycemic hyperosmolar nonketotic coma

Commonly measured analytes

- **Blood**: good marker: easily measure, little interference, good correlation
- Urine: needs glucose >1800mg/L to show (>3000mg/L for diabetics), \uparrow glucosuria in pregnancy, rickets, osteomalacia

Measuring glucose

- **Electrochemical glucose monitors**
 - \circ Glucose $\xrightarrow{glucose \ oxidase}$ hydrogen peroxide \xrightarrow{Pl} Pt (oxidation) $\stackrel{1}{\rightarrow} O_2$
 - Electrical current: produced, amplified, measured 0

 - Amount of current $\xrightarrow{proportional to}$ amount of glucose oxidized
- Photometric glucose monitors
 - Measures color change
 - Test strip embedded with glucose oxidase + peroxidase + dye
 - $\xrightarrow{glucose\ oxidase}$ $\xrightarrow{Peroxidase}$ hydrogen peroxide $\xrightarrow{Peroxidase}$ Dye oxidized \rightarrow color change Glucose –
 - When test strip insterted into meter, color change measured and converted to equivalent glucose level
- Hb A_{1C}
- nonenzymatic rxn
- Glucose + hemoglobin - \rightarrow Hb A_{1C}
- Hb A_{1C} measures average blood glucose level in past 4-6 weeks
- Amouth of elevation directly proportional to degree of hyperglycemia
- Assay methods (e.g. chromatography, electrophoresis) may be used to quantify levels of glycosylated protein

BIOCHEMISTRY OF DIABETES: METABOLISM

GLUCOSE METABOLISM!

Glucose transporters "GLUT"

- Structure: transmembrane proteins •
- Mechanism: eversion
- **Purpose:** glucose uptake (rate limiting step)
- Types:

TRANSPORTER	WHERE	WHAT
GLUT1	Everywhere	Basal glucose uptake
GLUT2	Liver, pancreatic islets, intestine	Liver: remove excess glucose from blood Pancreas: regulate insulin release
GLUT3	Brain neurons	Basal glucose uptake
GLUT4	Muscle, fat, heart	Activity increased by insulin
GLUT5	Intestine, testis, kidney, sperm	Fructose transport

Obesity

- Factors: sedentary lifestyle, high caloric intake
- **High correlation** between obesity $\leftarrow \rightarrow$ glucose metabolism $\leftarrow \rightarrow$ lipid metabolism
- Obesity \rightarrow insulin resistance \rightarrow DM \rightarrow lipid metabolism upsets

LIPID METABOLISM!

Overview

- Breaking it down in the gut: TG \rightarrow FA + acylglycerols
- **Absorption:** by the gut
- **Re-synthesization & secretion:** TG + lipoproteins (from lymph to blood, passing by liver and peripheral tissues)

Page |

- **Hydrolyzation:** TG $\xrightarrow{lipases}$ non-esterified fatty acids (NEFA) + glycerol
- Storage: FA stored as TG in fat droplets
- TCA cofactors, oxidative phosphorylation ATP generation **Liver action: NEFA** $\xrightarrow{\beta - oxidation}$ acetyl CoA

Glycerol \rightarrow supports gluconeogenesis

Thrifty Genes & Fat Storage

- Fat as preferable energy storage due to greater density (vs. glycogen)
- Natural selection for thrifty genes/traits are a survival mechanism to protect against starvation
- When food is abundant, thrifty genes chose to store calories as tirglycerides/fat

Randle Hypothesis

- \uparrow FA metabolism \rightarrow \uparrow acetyl CoA + \uparrow citrate \rightarrow (–) PFK & pyruvate dehydrogenase \rightarrow \downarrow glycolysis rate \rightarrow \uparrow intracellular glucose \rightarrow (–) hexokinase $\rightarrow \downarrow$ glucose usage
- Overall: \bigvee glucose uptake, \uparrow resistance
- Contrary evidence: incorrect for muscle tissue
 - \uparrow FA \rightarrow \uparrow acyl CoA + \uparrow diacylglycerol \rightarrow (–) insulin stimulated GLUTs
 - Not direct inhibition, but acyl Coa and diacylglycerol activate pathways that cause suppression of signals
 - \circ Linked to mitochondrial defects in beta-oxidation of FA \rightarrow causes accumulation of acyl CoA \rightarrow leas to interference with insulin signals

ENDOCRINOLOGY OF DIABETES: HORMONES

Structure of insulin

- Really long: 110 aa sequence
- Held together by S-S disulfide bridges

Insulin maturation

- Starts off as preproinsulin •
- Cleaved in ER, where 24 aa removed from N-terminus \rightarrow proinsulin
- Proinsulin folds, forming 3 S-S bonds
- C peptide cleaved in golgi apparatus and 4 more as removed \rightarrow insulin •

Insulin release

- GLUT2 mediates glucose uptake in β cells •
- Glucose metabolism in β cells \rightarrow ATP production \rightarrow causes K+ channels to close \rightarrow membrane depolarization \rightarrow Ca^{2+} entry into $\beta ell \rightarrow IP_3 + DAG \rightarrow exocytosis of insulin stimulated$
- Ca^{2+} activates CREB protein \rightarrow insulin gene expression
 - $(CREB = Ca^{2+} responsive Element Binding)$
- Kinetics: 1st phase=immediate bolus; 2nd phase=lower levels but elongated plateau

Insulin receptor

- Transmembrane receptor: tyrosine kinase class
- Heterodimer: $2\alpha + 2\beta$ subunits
 - \circ α subunits: extracellular, binds hormone
 - o β subunits: transmembrane, binds ATP, contains tyrosine kinase domains
 - S-S disulfide bonds stabilize dimeric structure

Signal transduction cascades

- Insulin mediates many different metabolic pathways in the liver, muscle, & fat; but overall \uparrow cellular respiration
- Aspects of the cascade: autophosphorylation of tyrosine kinase, ↑glucose transporters, GLUT4 in peripheral tissue
- Interruption of insulin signals
 - Apparent starvation: X insulin $\rightarrow \downarrow$ glucose entry into peripheral tissues \rightarrow energy starved
 - ↑FA metabolism
 - Ketosis: NEFA converted to ketone bodies
 - Insulin resistance: leads to *tinsulin production/release and hyperinsulinemia*

Glucagon

- Structure: 29 aa residue peptidic hormone
- Synthesis: proglucagon in α cells \rightarrow protease processing \rightarrow mature glucagon

WOODBURY

Page |

- Actions: ↑glucose concentration in blood; stimulates gluconeogenesis, lipolysis, ketone formation, aa uptake; glycogenesis inhibition in liver
- Receptor: G-protein linked receptor \rightarrow activation $\rightarrow \uparrow$ cAMP and (+)PKA

Somatostatin

- Structure: 14 aa peptidic hormone
 - Synthesis: in δ pancreatic cells as well as certain gut and neuronal cells
 - $_{\odot}$ Starts as a preprohormone ightarrow alternate ways of cleavage depending on tissue source and cell type
- Actions: depends on which of 5 subtypes
 - o (–) Insulin & glucagon secretion
 - (–) Self-secretion
 - (–) Pituitary hormone secretion: TSH, ACTH, & GH
 - (-) GI secretion: gastrin, secretin, cholecystokinin, etc.
 - $\circ~$ (–) Salivary secretion, acid and pepsin secretion, and $\rm JGI$ tract motility

Other relevant hormones

- **GLP-1** : glucagon-like peptide
 - Release stimulated by food intake
 - Actions: \uparrow insulin release, ↓glucagon levels
 - **IGF-1** : insulin-like growth factor
 - Produced by liver
 - o Actions: similar to insulin, but to a much smaller degree
- Amylin
 - Co-secreted with insulin
 - Actions: promotes postprandial glucose control

PHARMACOLOGY: DIABETES TREATMENT

TREATMENT TYPES!

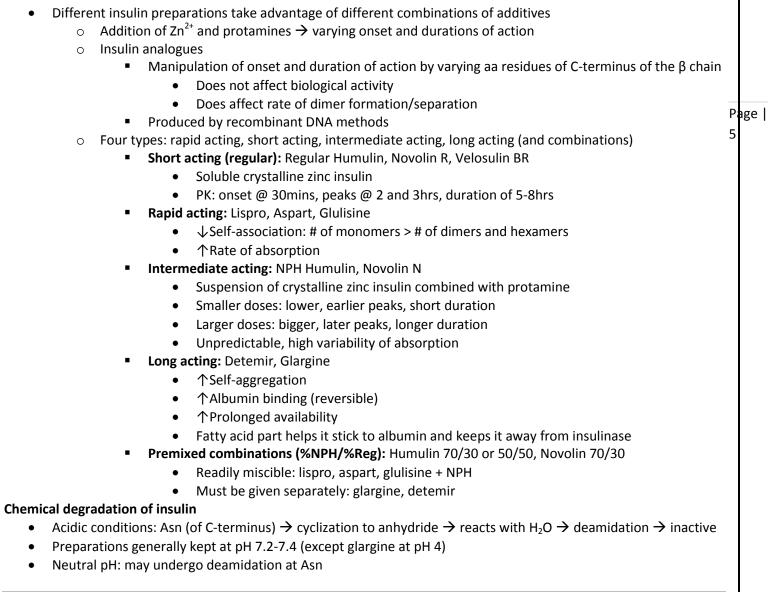
- Type I: exogenous insulin that mimics both basal and bolus insulin secretion in response to glucose
- **Type II:** maintenance of glucose concentrations within normal limits via ↓weight, ↑exercise, diet changes, oral hypoglycemic agents, and sometimes exogenous insulin therapy

EXOGENOUS INJECTABLE INSULINS!

For both Type I & Type II DM

- Insulin's aa sequence similar among humans, pigs, and cows \rightarrow therefore, we can use their insulin extracts
- However, impurities caused humans to produce antibodies to foregin insulin, so now semi-synthetic human insulin is most commonly used
- Semi-synthetic preparation: porcine insulin \rightarrow enzymatic conversion (replace Ala with Thr) \rightarrow "human" insulin
- Methods currently used: recombinant DNA methods (Humulin), yeast (Novolin)

Insulin kinetics


- Low basal rate
- High rate in response to meals (prandial + postprandial)
- Half life: 3-5 minutes (degraded by insulinase, removed from bloodstream by liver & kidneys)
- P'kinetics variable: very difficult to mimic (50% variance)
 - \circ $\;$ Variability due to rate of subcutaneous absorption, which is dependent on:
 - Formulation (concentration, additives, dosage form)
 - Injection conditions (site, injection depth, delivery device)
 - Other factors (smoker, exercise, temp, stresses)

Insulin properties & preparations

- At low concentrations: monomerAt high concentrations: dimers
- Readily diffuses into blood
- In presence of Zn^{2+} : hexamers \rightarrow Poorly diffuses, storage form in β cells
- Addition of a protamine (basic protein): prolonged effects, slow release

WOODBURY

Only for Type II DM

ORAL HYPOGLYCEMIC AGENTS!

Classification

- Insulin secretagogues: sulfonylureas, meglitinides
- Insulin sensitizers: thiazolidinediones (TZDs), biguanides (metformin, drug of choice)
- **α-glucosidase inhibitors:** acarbose, miglitol
- Incretin based: GLP-1 analogues, DPP-IV inhibitors
- Amylin analogues

INSULIN SECRETAGOGUES

SULFONYLUREAS

- Drugs: glipizide & glyburide (intermediate acting), glimepiride (long acting)
- SAR: para substituted aromatics with bulky substitutent
- **MOA**: bind to functioning β cell receptors \rightarrow block ATP sensitive K⁺ channels \rightarrow depolarization \rightarrow (+)endogenous insulin secretion from β cells; enhances peripheral insulin receptor sensitivity; \downarrow glycogenolysis
- P'kinetics: hepatically metabolized, renally excreted, highly protein bound
- Drug interactions: some drugs may inhibit their metabolism/excretion or displace it from bound protein MEGLITINIDES
 - **Drugs:** repaglinide (Prandin), nateglinide (Starlix)
 - Compared to sulfonylureas: 2 common binding sites + 1 unique binding site; less hypoglycemia

Page |

- MOA: similar to sulfonylureas: (+)endogenous insulin secretion from β cells
- P'kinetics: rapid onset, short acting, t¹/₂ <1hr, taken immediately before meals
- **Drug interactions:** drugs that affect CYP3A4 (inhibition \uparrow effects, induction \downarrow effects)

INSULIN SENSITIZERS

BIGUANIDES (metformin)

- **Drug:** metformin (Glucophage)
- MOA: activates enzyme AMPK $\rightarrow \downarrow$ hepatic glucose production; \downarrow hyperlipidemia
- SE: lactic acidosis (rare but serious/fatal)
- P'kinetics: not metabolized, renally excreted, t1/2 1.5-3hrs
- **Drug interactions:** cimetidine competes for renal excretion and can \uparrow metformin plasma levels
- Requires presence of insulin, does not promote its secretion
- Low risk of hypoglycemia
- The only oral agent shown to \downarrow CV mortality

THIAZOLIDINEDIONES

- Drugs: pioglitazone (Actos), rosiglitazone (Avandia)
- MOA: activation of PPAR-γ → (+) insulin responsive genes → ↑insulin sensitivity in adipocytes, hepatocyte, and skeletal muscles
- SE: hepatotoxicity, CV events (serious)
- Requires presence of insulin, does not promote its secretion
- Low risk of hypoglycemia

α-GLUCOSIDASE INHIBITORS "Starch inhibitors"

- Drugs: acarbose (Precose), miglitol (Glyset)
 - Acarbose: poorly absorbed, remains in intestines
 - Miglitol: absorbed, but not metabolized/excreted by kidney
- MOA: delays digestion of carbohydrates $\rightarrow \downarrow$ postprandial blood glucose concentrations
- SE: flatulence, diarrhea, abdominal pain

INCRETIN BASED THERAPIES

GLP-1 ANALOGUES

•

- Drugs: exenatide (Byetta), liraglutide (Victoza)
- MOA: (+)Insulin release when there are high glucose concentrations; ↓glucagon secretion, slows gastric emptying time, ↓appetite

DPP-IV INHIBITORS

- Drugs: sitagliptin (Januvia), saxagliptin (Onglyza)
- MOA: inhibits the enzyme responsible for degrading GLP-1 by cleaving after proline residues next to active site

AMYLIN AGONISTS

- Drug: pramlintide
- **MOA:** slows gastric emptying, \downarrow glucagon release