PHYSIOLOGY OF DIABETES: PANCREAS

Exocrine (pancreatic juices) & endocrine (insulin, glucagon) functions

Islets of Langerhans

- $\alpha \rightarrow$ glucagon, GLP-1, GLP-2
- $\beta \rightarrow$ insulin, C peptide, amylin
- $\delta \rightarrow$ somatostatin
- PP \rightarrow pancreatic polypeptide

Functions of pancreatic peptide hormones:

- **Insulin** \downarrow plasma sugar (\uparrow glucose uptake, \downarrow gluconeogenesis, \uparrow glycogen synthesis)
- **Glucagon** \uparrow plasma sugar (\uparrow gluconeogenesis, \uparrow glycogen breakdown)
- **Somatostatin** \downarrow insulin & \uparrow glucagon (negative feedback)
- **Amylin** \downarrow sugar (co-secreted with insulin, \downarrow gastric emptying time, \downarrow gastric secretions, \downarrow glucagon secretion, smooth out rises in glucose)
- **GLP-1** \downarrow plasma sugar (\uparrow insulin release, \downarrow glucagon release)

Type 1: Viral infection or chemical triggers \rightarrow immune attack \rightarrow loss of β cells \rightarrow \downarrow insulin
IDDM/juvenile onset
Evidence: antigens on β cells; chemical triggers include zinc chelators, nitrates, rodenticides

Type 2: Genes/exogenous stimuli \rightarrow defect in signaling/metabolic pathways \rightarrow insulin resistance
NIDDM/adult onset
Exogenous stimuli: iron overload, glucocorticoids

Gestational DM: pregnant moms need 4x more insulin, but if she does not produce enough to compensate for
\uparrow metabolic needs and \uparrow glucose output, she may develop gestational DM

- Correlation with obesity and family history
- Fetus risks: still birth, congenital anomalies
- \uparrow Risk for mom developing Type II later

Endocrinopathies

- \downarrow Insulin secretion: somatostatinoma, aldosteronoma, pheochromocytoma (tumors that \downarrow insulin secreted)
- \uparrow Insulin resistance: acromegaly, Cushing’s syndrome, hyperthyroidism (hormone problems \uparrow resistance)

\uparrow [Glucose] = \uparrow osmotic pressure = \uparrow bp \rightarrow polyuria/polydipsia to excrete glucose \rightarrow \uparrow protein filtration rate \rightarrow \uparrow pore size

AGE: Advanced Glycosylation End-products

- High [glucose] \rightarrow nonenzymatic glycosylation of proteins \rightarrow + addition products + rearrangements + more reactions \rightarrow stable AGE
- AGE affects both IC and EC
 - AGE alters enzymatic or binding activity of IC proteins \rightarrow damages cell
 - AGE causes abnormal interactions in EC matrix \rightarrow affects tissue adhesion & recognition systems

Trauma \rightarrow stress \rightarrow catecholamines + cortisol

- \uparrow Catabolism
- \downarrow Insulin release (signal)
- \uparrow Glucose production from liver
- \uparrow Lipolysis \rightarrow \uparrow plasma fatty acids
- \uparrow Protein & amino acid catabolism
- Results: hyperglycemia + ketosis in DM patients after surgery

Diabetes insipidus ("without taste," i.e. no glucose)

- Defect in AQP-2 epithelial protein in kidneys \rightarrow vasopressin insensitivity \rightarrow \downarrow reabsorption of H$_2$O \rightarrow urination

OGTT: oral glucose tolerance test

- Administration of glucose to determine how quickly it is cleared from the blood and homeostasis is maintained
- The test is usually used to test for diabetes, insulin resistance, and sometimes reactive hypoglycemia
- Normally: 30 min peak, return to fasting level at 2 hours
- Diabetes: later peak, does not return to fasting level (>200mg/dL)

Prediabetes

- Not quite there yet, but \uparrow risk of: type II, stroke, heart attacks
- Prediabetic pt has one or both of the following:
IFG: impaired fasting glucose levels (FBG > 100-1250mg/L)
IGT: impaired glucose tolerance (After OGT, glucose 1400-2000mg/L)

Extreme diabetic conditions
- >1800mg/L → glucosuria
- >1400mg/L → ketoacidosis
- >6000mg/L → HHNC: hyperglycemic hyperosmolar nonketotic coma

Commonly measured analytes
- Blood: good marker, easily measure, little interference, good correlation
- Urine: needs glucose >1800mg/L to show (>3000mg/L for diabetics), ↑glucosuria in pregnancy, rickets, osteomalacia

Measuring glucose
- Electrochemical glucose monitors
 - glucose oxidase
 - Glucose → hydrogen peroxide → O₂
 - Pt (oxidation)
 - Amount of current proportional to amount of glucose oxidized
- Photometric glucose monitors
 - Measures color change
 - Test strip embedded with glucose oxidase + peroxidase + dye
 - Glucose → hydrogen peroxide → Dye oxidized → color change
 - When test strip instereti into meter, color change measured and converted to equivalent glucose level
- Hb A₁C
 - Glucose + hemoglobin → Hb A₁C
 - Hb A₁C measures average blood glucose level in past 4-6 weeks
 - Amount of elevation directly proportional to degree of hyperglycemia
 - Assay methods (e.g. chromatography, electrophoresis) may be used to quantify levels of glycosylated protein

BIOCHEMISTRY OF DIABETES: METABOLISM

GLUCOSE METABOLISM!

Glucose transporters “GLUT”
- Structure: transmembrane proteins
- Mechanism: eversion
- Purpose: glucose uptake (rate limiting step)
- Types:

<table>
<thead>
<tr>
<th>TRANSPORTER</th>
<th>WHERE</th>
<th>WHAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLUT1</td>
<td>Everywhere</td>
<td>Basal glucose uptake</td>
</tr>
<tr>
<td>GLUT2</td>
<td>Liver, pancreatic islets, intestine</td>
<td>Liver: remove excess glucose from blood Pancreas: regulate insulin release</td>
</tr>
<tr>
<td>GLUT3</td>
<td>Brain neurons</td>
<td>Basal glucose uptake</td>
</tr>
<tr>
<td>GLUT4</td>
<td>Muscle, fat, heart</td>
<td>Activity increased by insulin</td>
</tr>
<tr>
<td>GLUT5</td>
<td>Intestine, testis, kidney, sperm</td>
<td>Fructose transport</td>
</tr>
</tbody>
</table>

Obesity
- Factors: sedentary lifestyle, high caloric intake
- High correlation between obesity ↔ glucose metabolism ↔ lipid metabolism
- Obesity → insulin resistance → DM → lipid metabolism upsets

LIPID METABOLISM!

Overview
- Breaking it down in the gut: TG → FA + acylglycerols
- Absorption: by the gut
- Re-synthesis & secretion: TG + lipoproteins (from lymph to blood, passing by liver and peripheral tissues)
Hydrolyzation: \(\text{TG} \xrightarrow{\text{lipases}} \text{non-esterified fatty acids (NEFA) + glycerol} \)

Storage: FA stored as TG in fat droplets

Liver action: \(\text{NEFA} \xrightarrow{\beta-oxidation} \text{acetyl CoA} \xrightarrow{TCA cox actors, oxidative phosphorylation} \text{ATP generation} \)

Glycerol \(\rightarrow \) supports gluconeogenesis

Thrifty Genes & Fat Storage
- Fat as preferable energy storage due to greater density (vs. glycogen)
- Natural selection for thrifty genes/traits are a survival mechanism to protect against starvation
- When food is abundant, thrifty genes chose to store calories as triglycerides/fat

Randle Hypothesis
- \(\uparrow \text{FA metabolism} \rightarrow \uparrow \text{acetyl CoA} + \uparrow \text{citrate} \rightarrow (-) \text{PFK & pyruvate dehydrogenase} \rightarrow \downarrow \text{glycolysis rate} \rightarrow \uparrow \text{intracellular glucose} \rightarrow (-) \text{hexokinase} \rightarrow \downarrow \text{glucose usage} \)
- Overall: \(\downarrow \text{glucose uptake, } \uparrow \text{resistance} \)
- Contrary evidence: incorrect for muscle tissue
 - \(\uparrow \text{FA} \rightarrow \uparrow \text{acyl CoA} + \uparrow \text{diacylglycerol} \rightarrow (-) \text{insulin stimulated GLUTs} \)
 - Not direct inhibition, but acyl Coa and diacylglycerol activate pathways that cause suppression of signals
 - Linked to mitochondrial defects in beta-oxidation of FA \(\rightarrow \) causes accumulation of acyl CoA \(\rightarrow \) leas to interference with insulin signals

ENDOCRINOLOGY OF DIABETES: HORMONES

Structure of insulin
- Really long: 110 aa sequence
- Held together by S-S disulfide bridges

Insulin maturation
- Starts off as preproinsulin
- Cleaved in ER, where 24 aa removed from N-terminus \(\rightarrow \) proinsulin
- Proinsulin folds, forming 3 S-S bonds
- C peptide cleaved in golgi apparatus and 4 more aa removed \(\rightarrow \) insulin

Insulin release
- GLUT2 mediates glucose uptake in \(\beta \) cells
- Glucose metabolism in \(\beta \) cells \(\rightarrow \) ATP production \(\rightarrow \) causes K+ channels to close \(\rightarrow \) membrane depolarization \(\rightarrow \) \(\text{Ca}^{2+} \) entry into \(\beta \) cell \(\rightarrow \text{IP}_3 + \text{DAG} \rightarrow \) exocytosis of insulin stimulated
- \(\text{Ca}^{2+} \) activates CREB protein \(\rightarrow \) insulin gene expression \(\quad \text{(CREB = Ca}^{2+} \text{ responsive Element Binding)} \)
- Kinetics: \(1^{\text{st}} \) phase=immediate bolus; \(2^{\text{nd}} \) phase=lower levels but elongated plateau

Insulin receptor
- Transmembrane receptor: tyrosine kinase class
- Heterodimer: \(2\alpha + 2\beta \) subunits
 - \(\alpha \) subunits: extracellular, binds hormone
 - \(\beta \) subunits: transmembrane, binds ATP, contains tyrosine kinase domains
- S-S disulfide bonds stabilize dimeric structure

Signal transduction cascades
- Insulin mediates many different metabolic pathways in the liver, muscle, & fat; but overall \(\uparrow \text{cellular respiration} \)
- Aspects of the cascade: autophosphorylation of tyrosine kinase, \(\uparrow \text{glucose transporters, GLUT4 in peripheral tissue} \)
- Interruption of insulin signals
 - Apparent starvation: X insulin \(\rightarrow \downarrow \text{glucose entry into peripheral tissues} \rightarrow \text{energy starved} \)
 - \(\uparrow \text{FA metabolism} \)
 - Ketosis: NEFA converted to ketone bodies
 - Insulin resistance: leads to \(\uparrow \text{insulin production/release} \) and hyperinsulinemia

Glucagon
- Structure: 29 aa residue peptidic hormone
- Synthesis: proglucagon in \(\alpha \) cells \(\rightarrow \) protease processing \(\rightarrow \) mature glucagon
- Actions: ↑glucose concentration in blood; stimulates gluconeogenesis, lipolysis, ketone formation, aa uptake; glycogenesis inhibition in liver
- Receptor: G-protein linked receptor → activation → ↑cAMP and (+)PKA

Somatostatin
- Structure: 14 aa peptidic hormone
- Synthesis: in δ pancreatic cells as well as certain gut and neuronal cells
 - Starts as a preprohormone → alternate ways of cleavage depending on tissue source and cell type
- Actions: depends on which of 5 subtypes
 - (–) Insulin & glucagon secretion
 - (–) Self-secretion
 - (–) Pituitary hormone secretion: TSH, ACTH, & GH
 - (–) GI secretion: gastrin, secretin, cholecystokinin, etc.
 - (–) Salivary secretion, acid and pepsin secretion, and ↓GI tract motility

Other relevant hormones
- **GLP-1**: glucagon-like peptide
 - Release stimulated by food intake
 - Actions: ↑insulin release, ↓glucagon levels
- **IGF-1**: insulin-like growth factor
 - Produced by liver
 - Actions: similar to insulin, but to a much smaller degree
- **Amylin**
 - Co-secreted with insulin
 - Actions: promotes postprandial glucose control

PHARMACOLOGY: DIABETES TREATMENT

TREATMENT TYPES!
- **Type I**: exogenous insulin that mimics both basal and bolus insulin secretion in response to glucose
- **Type II**: maintenance of glucose concentrations within normal limits via ↓weight, ↑exercise, diet changes, oral hypoglycemic agents, and sometimes exogenous insulin therapy

EXOGENOUS INJECTABLE INSULINS!
- For both Type I & Type II DM

- Insulin’s aa sequence similar among humans, pigs, and cows → therefore, we can use their insulin extracts
- However, impurities caused humans to produce antibodies to foreign insulin, so now semi-synthetic human insulin is most commonly used
- Semi-synthetic preparation: porcine insulin → enzymatic conversion (replace Ala with Thr) → “human” insulin
- Methods currently used: recombinant DNA methods (Humulin), yeast (Novolin)

Insulin kinetics
- Low basal rate
- High rate in response to meals (prandial + postprandial)
- Half life: 3-5 minutes (degraded by insulinase, removed from bloodstream by liver & kidneys)
- P’kinetics variable: very difficult to mimic (50% variance)
 - Variability due to rate of subcutaneous absorption, which is dependent on:
 - Formulation (concentration, additives, dosage form)
 - Injection conditions (site, injection depth, delivery device)
 - Other factors (smoker, exercise, temp, stresses)

Insulin properties & preparations
- At low concentrations: monomer
- At high concentrations: dimers
 - Readily diffuses into blood
- In presence of Zn²⁺: hexamers → Poorly diffuses, storage form in β cells
- Addition of a protamine (basic protein): prolonged effects, slow release
Different insulin preparations take advantage of different combinations of additives
 - Addition of Zn\(^{2+}\) and protamines → varying onset and durations of action
 - Insulin analogues
 - Manipulation of onset and duration of action by varying aa residues of C-terminus of the β chain
 - Does not affect biological activity
 - Does affect rate of dimer formation/separation
 - Produced by recombinant DNA methods
 - Four types: rapid acting, short acting, intermediate acting, long acting (and combinations)
 - **Short acting (regular):** Regular Humulin, Novolin R, Velosulin BR
 - Soluble crystalline zinc insulin
 - PK: onset @ 30mins, peaks @ 2 and 3hrs, duration of 5-8hrs
 - **Rapid acting:** Lispro, Aspart, Glulisine
 - ↓Self-association: # of monomers > # of dimers and hexamers
 - ↑Rate of absorption
 - **Intermediate acting:** NPH Humulin, Novolin N
 - Suspension of crystalline zinc insulin combined with protamine
 - Smaller doses: lower, earlier peaks, short duration
 - Larger doses: bigger, later peaks, longer duration
 - Unpredictable, high variability of absorption
 - **Long acting:** Detemir, Glargine
 - ↑Self-aggregation
 - ↑Albumin binding (reversible)
 - ↑Prolonged availability
 - Fatty acid part helps it stick to albumin and keeps it away from insulinase
 - **Premixed combinations (%NPH/%Reg):** Humulin 70/30 or 50/50, Novolin 70/30
 - Readily miscible: lispro, aspart, glulisine + NPH
 - Must be given separately: glargine, detemir

Chemical degradation of insulin
- Acidic conditions: Asn (of C-terminus) → cyclization to anhydride → reacts with H\(_2\)O → deamidation → inactive
- Preparations generally kept at pH 7.2-7.4 (except glargine at pH 4)
- Neutral pH: may undergo deamidation at Asn

ORAL HYPOGLYCEMIC AGENTS!
Classification
- **Insulin secretagogues:** sulfonylureas, meglitinides
- **Insulin sensitizers:** thiazolidinediones (TZDs), biguanides (metformin, drug of choice)
- **α-glucosidase inhibitors:** acarbose, miglitol
- **Incretin based:** GLP-1 analogues, DPP-IV inhibitors
- **Amylin analogues**

INSULIN SECRETAGOGUES

SULFONYLUREAS
- **Drugs:** glipizide & glyburide (intermediate acting), glimepiride (long acting)
- **SAR:** para substituted aromatics with bulky substituent
- **MOA:** bind to functioning β cell receptors → block ATP sensitive K\(^+\) channels → depolarization → (+)endogenous insulin secretion from β cells; enhances peripheral insulin receptor sensitivity; ↓glycogenolysis
- **P’kinetics:** hepatically metabolized, renally excreted, highly protein bound
- **Drug interactions:** some drugs may inhibit their metabolism/excretion or displace it from bound protein

MEGLITINIDES
- **Drugs:** repaglinide (Prandin), nateglinide (Starlix)
- **Compared to sulfonylureas:** 2 common binding sites + 1 unique binding site; less hypoglycemia
• **MOA:** similar to sulfonylureas: (+)endogenous insulin secretion from β cells
• **P'kinetics:** rapid onset, short acting, t½ <1hr, taken immediately before meals
• **Drug interactions:** drugs that affect CYP3A4 (inhibition ↑effects, induction ↓effects)

INSULIN SENSITIZERS

BIGUANIDES (metformin)
- **Drug:** metformin (Glucophage)
- **MOA:** activates enzyme AMPK → ↓hepatic glucose production; ↓hyperlipidemia
- **SE:** lactic acidosis (rare but serious/fatal)
- **P'kinetics:** not metabolized, renally excreted, t½ 1.5-3hrs
- **Drug interactions:** cimetidine competes for renal excretion and can ↑metformin plasma levels
- Requires presence of insulin, does not promote its secretion
- Low risk of hypoglycemia
- The only oral agent shown to ↓CV mortality

THIAZOLIDINEDIONES
- **Drugs:** pioglitazone (Actos), rosiglitazone (Avandia)
- **MOA:** activation of PPAR-γ → (+) insulin responsive genes → ↑insulin sensitivity in adipocytes, hepatocyte, and skeletal muscles
- **SE:** hepatotoxicity, CV events (serious)
- Requires presence of insulin, does not promote its secretion
- Low risk of hypoglycemia

α-GLUCOSIDASE INHIBITORS “Starch inhibitors”
- **Drugs:** acarbose (Precose), miglitol (Glyset)
 - Acarbose: poorly absorbed, remains in intestines
 - Miglitol: absorbed, but not metabolized/excreted by kidney
- **MOA:** delays digestion of carbohydrates → ↓postprandial blood glucose concentrations
- **SE:** flatulence, diarrhea, abdominal pain

INCRETIN BASED THERAPIES

GLP-1 ANALOGUES
- **Drugs:** exenatide (Byetta), liraglutide (Victoza)
- **MOA:** (+)Insulin release when there are high glucose concentrations; ↓glucagon secretion, slows gastric emptying time, ↓appetite

DPP-IV INHIBITORS
- **Drugs:** sitagliptin (Januvia), saxagliptin (Onglyza)
- **MOA:** inhibits the enzyme responsible for degrading GLP-1 by cleaving after proline residues next to active site

AMYLIN AGONISTS
- **Drug:** pramlintide
- **MOA:** slows gastric emptying, ↓glucagon release