nutrition

3 Types of malnutrition

- 1. Marasmus: lack somatic proteins
- 2. Kwashiorkor: lack visceral proteins
- 3. Mixed Marasmus/Kwashiorkor: a bit of both

3 Protein compartments

- 1. Somatic: muscle proteins
- 2. Visceral: produced by organs, e.g. albumin, transferrin
- 3. Immunity: a subset of visceral, e.g. antibodies, clotting factors

5 Steps to assess nutritional status

- 1. Visual assessment
 - Marasmus vs. Kwashiorkor
- 2. Patient's history: present and past weight
- 3. Physical exam
- 4. Protein compartments
 - Weight/Height measurements
 - Edema/obesity/pathologies distort results
 - Anthropometric measurements: muscle vs. fat amounts
 - \circ Triceps skin fold
 - o Mid-arm circumference
 - Creatinine/height index (CHI)
 - Urinary creatinine is decreased in malnutrition and renal disease
 - Better in terms of height than weight
 - CHI = actual/normal mg excreted (where 90%-100% is normal)
 - Albumin: 50-60% of total serum proteins
 - \circ Normal conc. = 3.4-5g/100ml of blood
 - \circ Catabolic stress = \downarrow albumin = \uparrow insulin = further \downarrow aa
 - o Interplay between 2 types of malnutrition: somatic aa used as building blocks for visceral aa
 - \circ Easier to detect drop in serum conc. of transferrin than albumin
- 5. Immune competence (anergy=inability of a patient to respond to an infection)
 - Lymphocyte counts
 - Antigen-skin tests: Multitest CMI system (think Cooties game)
 - \circ Ability of lymphocytes and immunoglobulins to respond to antigens
 - >1 grade of swelling/redness indicates some immune response
 - \circ 0 grade = lack of response = indicative of anergy and malnutrition

4 Roles of pharmacists in nutrition

- 1. Help diagnose type/degree of malnutrition
- 2. Recommend treatment/method
- 3. Evaluate treatment, suggest changes
- 4. Management

If the GI tract works, use it!

- Into mouth (nasogastric tube)
- Into stomach (gastrostomy)
- Into small intestine (jejunostomy)

If not, use parental/IV administration

- Protein sparing
 - o Mild patients

- Peripheral arm vein
- Isotonic: 2.75-3.5% solution (+vitamins, minerals, electrolytes)
- o Not a TPN modality: no fat or dextrose given

• Peripheral TPN

- Mild to moderate patients for limited time (<10 days)
- o Patients wit septicemia
- $\circ \quad \text{No fluid restrictions} \\$
- Central TPN
 - Moderate to severe patients
 - o Burn patients (no peripheral veins available)
 - Longer duration (2-3 weeks)
 - o Subclavian or internal jugular vein

Numbers to know

Nitrogen balance = [Protein intake x 16%] – [N_{excreted} + C]

 \rightarrow should have positive N_{balance} of 4-6g

Caloric conversions:

- Dextrose: 3.4kcal/g
- Lipid emulsion: 9kcal/g

Nutritional requirements:

- Protein (supplied in 3.5-15% conc.)
 - Maintenance 0.8-1.6g aa/kg/day
 - Mild trauma 1.6g-2.0g aa/kg/day
 - Severe trauma 2.0-3.0g aa/kg/day
- Nitrogen
 - 16% of protein -or- protein/6.25 (in grams)
- Calories
 - \circ Mildly stressed 125-150kcal/gN₂
 - Highly stressed 80-100kcal/gN₂ (note: less calories needed for severe pts because less mobilized)
 - Provided as dextrose and fat (50/50, 40/60)
 - Dextrose supplied as 5-70% concentration (e.g. D₅W=50g/L, D₅₀W=500g/L)
 - Lipid emulsion supplied as 10-20% concentration
 - 200 extra kcal from glycerin and emulsifiers
 - Now favored over dextrose because
 - ↓Hyperglycemia risk
 - Dextrose → fat (accumulates in liver)
 - $\circ \quad \psi$ Osmolarity of aa/dextrose solutions to facilitate peripheral admin
 - $\circ \quad \downarrow$ Severity and frequency of phlebitis
 - \downarrow Chance of essential FA deficiency

Molecular weights

- Dextrose: 180g/mol
- NS: 58.5g/mol

CALCULATIONS

Solve for nutrition

- 1. Solve for volume (ml) of amino acids needed [use: degree of trauma, weight of pt, concentration]
- 2. Solve for amount (g) of nitrogen needed [use: grams of amino acid from part 1]
- 3. Solve for kcal needed [use: degree of trauma, grams of nitrogen from part 2]
 - a. Determine ratio of dextrose/lipid

- 4. Solve for volume (ml) of **dextrose** needed [use: ratio, concentration, caloric conversion]
- 5. Solve for volume (ml) of lipid emulsion needed [use: ratio, concentration, caloric conversion]

Solve for tonicity

- Amino acids: will be given mOsm/L, use known volume to solve
- Dextrose: solve knowing D5W=280mOsm/L, multiply by known volume
- Lipid emulsion: 2.25g glycerin/100ml...

Incompatibility charts

	ANIONS				
		Monovalent Cl ⁻	Divalent CO ₃ ²⁻	Trivalent PO ₄ ³⁻	
CATIONS	Monovalent Na $^{+}$, K $^{+}$	Soluble	Soluble	Soluble	
	Divalent Ca ²⁺ , Mg ²⁺ Soluble		Insoluble	Insoluble	
	Trivalent	Soluble	Insoluble	Insoluble	

Mg2+ behaves differently \rightarrow important when considering lactate ringers and ringer solutions

Ion pair incompatibilities

Mixing of a weak acid drug with a weak basic drug

Barbiturates: weak acids

Heparin: weak bases

Na+Phenobarb- + Morphine+SO4- \rightarrow big insoluble salt

Na+Phenobarb- + Tetracycline+Cl- \rightarrow big insoluble salt

90% of reactions are some form of ion pair incompatibility

		LVP				
		D5W + 5%NaHCO ₃	0.9% NaCl	D5RL	D5W + 15000	
S		(basic)	(neutral)	(neutral, Ca ²⁺)	NaHeparin (basic)	
V	Dopamine HCl (basic)	I (free base)	С	С	I (ion pair precip)	
Ρ	NaPhenytoin (acidic)	l (insoluble)	С	I (insoluble)	I (insoluble)	
	KPenG (acidic)	I (base hydrolysis)	С	С	I (base hydrolysis)	

SVP: have added sodium hydroxide (basic) but drug itself may be acidic Penicillins: beta lactams or lactones, cyclic esters or amides

Beta lactam rings are sensitive to both acids and bases which cause hydrolysis

A lot of lactates are soluble: low enough molecular weight

NaPhenytoin is only soluble in NS and needs to be given w/in a ½ hr of making it up

NaPhenytoin is a weak acid but likes base, it is a very insoluble drug (in order to keep it ionized, need a lot of cosolvents and need to raise the pH really high)

	LVP					
		0.9% NaCl	D5RL	D5W + 15000		
		(neutral)	(neutral)	NaHeparin (basic,		
				w.acid drug)		
S	NaSucc of					
V	Hydrocortisone (w.	С	I Ca3(PO3)2	I (ester hydrolysis)		
Ρ	acid)					
	Cimetidine HCl					
	(w.base)	С	С	I (ion pair)		
	Tetracylcine HCl		I (tet reacts	I (ion pair, free		
	(w.base)	С	w/ Ca2+)	base)		
	NaAmp + NaSucc of			I (amp inc		
	Hydrocortisone	С	I (amp inc	w/dextrose,		

	(w.acid)	w/dextrose)	hvdrolvsis)	
	(w.uciu)	in ackerose)	nyarorysisj	

Benzyl alcohol: preservative

Sodium biphospahte anhydrous: buffer (phosphates are trivalent)

Ascorbic acid: antioxidant

Ampicillin can't be given in dextrose: it will hydrolyze the ampicillin

Hydrocortisone is an ester: ester hydrolysis

Tetracylcine: don't take with milk or cheese because of it reacts with calcium

Barbituates: weak acid

Morphine sulfate: weak base

	LVP				
_		RL +20000 NaHep (basic)	D20W + 4.25%aas (acid)	NS+50mg Hydrocortisone NaSucc ((acid)	
S	Lidocaine HCl	l (ion pair, free	С	I (ion pair)	
V P	(base) NaKochalate (acid)	base) C	l (free acid)	с	
	Haloperiodl lactate ester	l (base hydrolysis of ester)	l (acid hydrolysis of ester)	С	

When have big amounts of heparin \rightarrow probably basic If small amounts \rightarrow not going to make it basic In general, not good to put drugs in TPN

IMMUNE STIMULANTS

Vaccines

- Attenuated(live) or inactivated (killed)
- Whole or fractions
- Take virus \rightarrow sonicate to death \rightarrow differential centrifugation to isolate portion important for immune response

Toxoid

- Modified exotoxin rendered non-toxic
- Easy for companies to make
- Require refrigeration and/or reconstitution (freeze dried powder)

Passive immunity

- Human immune sera
 - o Immuneglobulin: e.g. measles, hepatitis A
 - \circ $\;$ Hyper immune serum: e.g. hepatitis B, rabies
- Animal immune sera
 - Antitoxin: e.g. botulism, diphtheria, tetanus
 - Antiviral serum: e.g. rabies
 - o Antivenin: e.g. rattle snake, black widow spider, scorpion
- Viral vaccines e.g. measles, mumps, influenza
 - o Isolated by: disintegration, column filtration, differential centrifugation
- Viral vaccines in human tissue culture

Allergen extracts

- Types: food, animals, grasses, insects, molds, trees, weeds, inhalants
- Extraction process: percolation/decoction
- Diagnosis: scratch/prick test using very dilute solutions of allergen extracts

Immunotherapy

- Treatment of disease by inducing, enhancing, or suppressing an immune response
- Goal: to increase IgG
- Small subcut doses \rightarrow weak dose qwk \rightarrow increasing strength or # of doses over a few months
- IgG competes with IgE IgG>>>IgE with increased dosing with allergen
- Problems: difficult to standardize and establish potency
- Dosage forms: solutions, suspensions, lyophilized powders requiring reconstitution
- Additives
 - Human serum albumin: protein preservative
 - Normal saline: tonicity
 - Phenol: antimicrobial
 - Glycerin: protein preservative
 - o Aluminum precipitated allergen: slows absorption/action of allergen
- Use & Handling
 - o Aseptic and sterile procedures
 - o Proper documentation
 - Generally require refrigeration (never frozen)
 - Sterility testing required (particulate/pyrogen testing not)

Hymenoptera venoms

- Honeybee, wasp, hornets
- Purified, lyophilized
- Usually only venom collected, not whole insect (exception: fire ants)

PROTEIN PHARMACEUTICALS

Biotechnological products techniques

- Recombinant DNA
- Monoclonal antibodies
- PCR
- Gene therapy
- Nucleotide blockade/antisense (mRNA)

Chemical instability

Change in structure due to breaking of bonds

- Proteolytic cleavage
 - o Proteases
 - o Hydrolysis: solution is to lyophilize the product
- Deamidation: cleave NH3 group
- Oxidation: Met, Cys (also His, Trp, Tyr)

Physical instability

Change in structure *not* due to bond breaking/forming

- Aggregation: precipitation, normal Brownian motion
- Conformational stability: denaturing/unfolding of protein

Additives in biotech formulations

Serum albumin

- o Flood the system so active proteins won't be bound, i.e. inhibit adsorption
- Adsorption binding sites may be hydrophilic or lipophilic, proteins have both, which makes it a problem
- Tubing: use polyester or nylon, not PVC, which has more binding sites
- Resembles nascent complexing proteins: w/o nascent proteins, active proteins are more active
- Cryoprotectant: protects while freeze drying, almost as good as mannitol
- o Examples when albumin is used: interferon, IL-2, TPA

• Amino acids (Gly)

- Chelate trace elements to prevent aggregation : trace elements allow aggregation, e.g. Zn in insulin
- \circ $\ \ \,$ Take up adsorption sites to reduce surface adsorption
- Inhibit aggregate formation
- o Inhibit thermal induced inactivation: neutral amino acids like glycine protect the formulation if heated

• Fatty acids & phospholipids

- 7-8 carbon length is optimal
- o Liposomal systems help stabilize proteins and peptides through nonpolar interactions
- Protection of non-polar portion of protein interacting with non-polar lipid (emulsifiers for lipids are phospholipids)

• Surfactants

- Charged surfactants (cationic/anionic) cause denaturation
- Non-ionic surfactants stabilize by reducing interfacial tension
- Reduce tendency for protein to unfold, help retain structure
- Examples: Tween 80, Brij, poloxamer)

• Metals

- Ca²⁺ and Cu³⁺ stabilize proteins
- o Bridge between disulfide bonds: helps stabilize bonds and tertiary structure

• Polyols

- Polyhydroxyl groups: carbohydrates, sorbitol, mannitol, glycerol
- Used in lyophilized dosage forms to prevent aggregation by adding bulk
- Aids reconstitution: polyols are very water soluble, help the water get to the amino acid very quickly
- Protects against oxidation
- o Strengthens intra hydrophobic bonds by reducing the interaction between water and protein
- Humectant: helps hydrate the protein for protection and stabilization

• Reducing agents

- o Reduce disulfide bond formation, which tends to lower protein activity
- o Agents: glutathione, thioethanolamine, thiodiglycol, thioacetic acid, N-acetylcysteine
- Chelating agents
 - o Problem: Cu, Fe, Ca, Mn act as catalysts in oxidation reactions by using up the oxygen
 - Chelating these metals help stabilize the formulation by using up the active sites on the metals
 - o Agents: EDTA, diNa, CadiNa, tetraNa
- Miscellaneous
 - Hydrolyzed gelatin: available amino acids
 - Ammonium sulfate: adjusts pH